
WSim Workload Simulator

User's Guide
Version 1 Release 1

SC31-8948-01

���

WSim Workload Simulator

User's Guide
Version 1 Release 1

SC31-8948-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under“Notices” on page
163.

Second Edition (October 2015)

This document applies to the Workload Simulator Version 1 Release 1 (program number 5655-I39), an IBM licensed
program, which runs under the following operating systems:

MVS/370 (MVS/SP Version 1 or later)

MVS/Extended Architecture (MVS/SP Version 2 or later)

MVS/Enterprise System Architecture (MVS/SP Version 3 or later)

OS/390

© Copyright International Business Machines Corporation 1983, 2015. All rights reserved.

Note to U.S. Government Users Documentation related to restricted rights Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures vii

About this book ix
Who should read this book ix
How to use this book ix
Where to find more information xi

Part 1. Planning and installation . . . 1

Chapter 1. Getting started with WSim . . 3
What is Workload Simulator? 3
How do you use WSim? 3

What can WSim simulate? 4
Conducting tests 4

Installing WSim 4
Planning. 5
Configuring your system 5
Defining the simulated network 5
Creating message generation decks 5
Running the test 6
Using WSim output to analyze the results . . . 6

Chapter 2. Installing WSim. 7
Understanding installation and system requirements 7

MVS requirements 7
General requirements 8
Communication controller requirements 9

Printing the WSim program directory 9
Authorizing WSim 10

Authorizing WSim on MVS 10
Authorizing WSim under TSO 10

Installing the WSim/ISPF Interface 12
WSim library setup 14

Checklist for installing WSim 15

Chapter 3. Testing with WSim 17
What can you test? 17

Function tests. 17
Regression tests 17
Performance tests 18
Stress tests. 18
Capacity planning tests 18

What should you test?. 19
What is the cost of testing? 19
What is the cost of not testing? 19

Chapter 4. Creating a test plan 21
Establishing test objectives 21

Purpose 21
Expected results 21

Designing a test plan 21
Writing a test plan 22

Introduction 23
Objectives 23

Resources 23
Test specifications 24
Testing procedures 24

Chapter 5. Determining your system
configuration 27
Understanding logical and physical configurations 27

Logical configuration 27
Physical configuration 28

Configuring your system 28
Summary 29

Determining logical and physical configurations . . 29
VTAM application simulation 29
CPI-C transaction program simulation 31
TCP/IP application configuration 33

Chapter 6. Defining the simulated
network 37
Naming the network and its resources 37
Using network definition statements 38

Syntax of network definition statements 38
Order of network definition statements 38

Simulating networks 39
Simulating logical units using the VTAM
application program interface 39
Simulating CPI-C transaction programs 40
Simulating TCP/IP clients 41
Simulating specific devices 42
Coding network options 43

Chapter 7. Creating message
generation decks 45
What are message generation decks? 45
Steps for creating message generation decks . . . 45
Deciding which transactions to test 46

Considering what messages you want to send . . 46
Considering what messages you expect to receive 47
Considering the transaction mix 47
Considering the transaction rate 48

Deciding which application files and data to use . . 48
Creating message generation decks 48

Using message generation statements. 49
Using the Structured Translator Language and
the STL Translator 50
Using the Interactive Data Capture Utility
(ITPIDC) 51
Using the Script Generator Utility 52
Using SNA 3270 Reformatter Utility (ITPLU2RF) 55
Using the TCP/IP Trace STL Generation Utility 56

Testing scripts 56
Using message trace records 56
Using STL trace records 57
Using self-checking scripts 57

iii

111111

Chapter 8. Running the test 61
Running and analyzing a sample test 61
Preprocessing the script 61

Using the Preprocessor 62
Using ITPSYSIN 63

Estimating storage requirements 63
Host processor virtual storage estimates 63

Running WSim 66
Using MVS 66
Using TSO. 66

Controlling and monitoring WSim operation . . . 66
Using operator commands 67
Controlling WSim from a console 67
Controlling WSim automatically 67
Using the Display Monitor Facility 68

Running WSim as a permanent task 69
Understanding the benefits and concerns . . . 69
Using the online response-time monitor 70

Chapter 9. Using WSim output 71
Using operator reports. 71

Using interval reports 71
Using end of run reports 72
Using inactivity reports 72

Logging messages 73
Formatting the log data set 73

Running the Loglist Utility 73
Using the output from the Loglist Utility . . . 73

Comparing 3270 display records 74
Running the Log Compare Utility 74
Synchronizing the log data sets 75
Using the output from the Log Compare Utility 75

Determining response times 77
Using the Response Time Utility 77
Using the response-time statistics feature . . . 79

Chapter 10. Sample files 81
MVS sample data set 81
CLIST data sets 82

Chapter 11. Using WSim to measure
response times 83
RSTATS feature 83
Response Time Utility 83

Chapter 12. Summary of logical unit
(LU) types 85

Part 2. Operation 87

Chapter 13. Introduction to WSim
operation. 89

Chapter 14. Running WSim 91
Running WSim on MVS with JCL 91

Using JCL for CPI-C, VTAMAPPL or TCP/IP
simulations 91
Allocating the SYSPRINT data set 93

Formatting ITPS99TU 94
Running WSim on MVS with a TSO CLIST 94

Planning considerations 94
Communicating with a TSO terminal 94
Using a TSO CLIST. 94

Running WSim under ISPF 95
Using WSim execution parameters. 95
Understanding return codes 97

Chapter 15. Using operator commands 99
Introducing operator commands 99

Specifying operator commands at the console . . 99
Specifying operator commands with the
OPCMND statement 99
Understanding the order of execution for
operator commands 99

Specifying resources with operator commands . . 100
Entering operator commands at the console . . . 100

Entering operator commands on MVS with
WSim as a started procedure 100
Entering operator commands on MVS with
WSim as a batch job 101
Entering operator commands when executing
directly under TSO 101

Controlling WSim and simulated resources . . . 101
Starting and stopping WSim 101
Initializing and starting a network 102
Displaying the status of network resources . . 103

Using service facilities 111
Dispatcher trace 112
Dumping control blocks 112

Controlling resources on a network 112
Starting and stopping resources 112
Resetting a network 112
Changing network parameters. 113
Canceling network resources 113
Using console recovery 113

Using online response-time statistics. 114
RSTATS output 114
The RSTATS operand 115
Resetting response statistics 115

Routing messages 115
Routing messages to consoles 116
Routing messages to log data sets 116

Chapter 16. Using operator reports 117
Using interval reports 117
Using end of run reports 119
Using inactivity reports 119

Chapter 17. Controlling message
logging 121
What is message logging? 121
Logging messages 121
Inhibiting the logging of console messages . . . 122
Restarting message logging. 123

Chapter 18. Using the Display Monitor
Facility 125
Using the Display Monitor Facility 125

iv WSim Workload Simulator: User's Guide

Debugging scripts 125
Monitoring scripts 126

Starting the Display Monitor Facility 126
Using the M operator command 126
Logging on to the Display Monitor Facility . . 126

Viewing screen images 127
Specifying NAME 127
Specifying VIEW 127
Specifying UPDATE 128
Specifying SOURCE 128
Specifying TIMER 129
Specifying AID 129

Viewing the data stream. 129
Specifying NAME 129
Specifying VIEW and LINES 129
Specifying CODE 130
Interpreting the Display Monitor Facility data
stream display 130
Interpreting data stream messages 131
Controlling the Display Monitor Facility data
stream display 132

Specifying BIND profiles 132
Chaining to support max RU size when
VIEW=SCREEN and SOURCE=DATA 132

Chapter 19. Isolating problems 133
Classifying problems 133

Classifying hardware problems 133
Classifying software problems 133
Classifying problems with installation and
procedures 133

Isolating problems. 134
Program checks 134
Loops 134
Incorrect or missing message traffic 134

Problem reporting 135

Chapter 20. Specifying operator
commands 137
Understanding operator command coding terms 137

Understanding operator command coding
conventions 137
Understanding resource names 138
Using operator commands 138

A-Alter network operands 138
C-Cancel network resources 148
D-Dump control blocks 148
E-Restart message logging 149
F-Enter console recovery 149
G-Terminal status query 150
I-Initialize a network 151
M-Display monitor facility 152
O-Output data 155
P-Stop network resources 156
Q-Query network resources 156
R-Reset a network 158
S-Start network resources 158
T-Dispatcher traces 158
W-RSTATS query 159
Z-Closedown 159
*-Comment 160
$-Exit 160

Part 3. Appendixes 161

Notices 163
Trademarks and service marks 164

Glossary 165

Bibliography. 173
WSim library 173
Related publications 173

Index 175

Contents v

vi WSim Workload Simulator: User's Guide

Figures

1. Example of updated ISPF/PDF primary option
menu 13

2. Example schedule for a test 25
3. Logical configuration for VTAM application

simulation 29
4. Physical configuration for simulation of a

VTAM application or CPI-C transaction
program 30

5. Logical configuration for CPI-C transaction
program simulation 32

6. Logical configuration for TCP/IP client
simulation 34

7. Physical configuration for TCP/IP client
simulation 34

8. Generating scripts with the script generator
utility 53

9. Sample network for estimating storage 65
10. Query without resource specified 103
11. Network query 104
12. Query of a TCPIP, APPCLU or VTAMAPPL 106
13. Device query. 107
14. Save area or user area query 111
15. Example statistics provided by RSTATS 114
16. Interval report 118
17. End of Run Report 119
18. Inactivity Report 120
19. Display Monitor Facility selection panel 127
20. Display Monitor Facility data stream display 130

vii

viii WSim Workload Simulator: User's Guide

About this book

This book gives you the information you need to plan for Workload Simulator
(WSim) tests and describes the requirements for installing and operating WSim on
your system.

This book discusses the following topics:
v Installation and system requirements for using WSim
v Strategies for developing written test plans for tests
v The tasks you perform during tests. This information helps you decide which

options, utilities, and features to use
v Running and controlling WSim
v Isolating problems encountered while running WSim.

This book enables you to assess what resources (computer, time, and human) you
need to perform tests. It also helps you operate WSim by providing information on
the WSim operator commands.

Who should read this book
This book is intended for any WSim user who:
v Is responsible for developing test plans
v Wants a general overview of the tasks performed during tests
v Needs to install WSim
v Operates WSim daily.

Before using this book, you should be familiar with WSim and Systems Network
Architecture (SNA) terminology and concepts.

How to use this book
This book contains information from many of the books in the library for WSim
and provides a comprehensive, task-oriented approach to planning. It also
describes the requirements for installing WSim on your system. The sequence of
topics in this book parallels the order of the tasks you perform as you plan for and
conduct tests. This means that information about installing WSim is presented first,
followed by information about determining the type of test and its objectives,
configuring your system, defining the network and messages to be simulated,
running the test, using WSim output, and operating WSim.

This book is designed to be the first book you use during testing. If you are a new
WSim user, you should read the entire book and develop a test plan before you
conduct your first test. Then, refer to individual chapters as needed to modify and
refine your test plan. Pay special attention to sections that describe the planning
considerations for using new or changed features. If you are responsible for
installing WSim, concentrate on Installing WSim, which describes the installation
and system requirements for WSim. Part 2. Operation provides information on the
WSim operator commands.

ix

Part 1. Planning and Installation, contains information on planning for and
installing WSim.
v Chapter 1, “Getting started with WSim,” on page 3 provides an overview of

WSim, describes the general process used in testing, and explains how you
should use the other books in the WSim library.

v Chapter 2, “Installing WSim,” on page 7describes the installation and system
requirements for using WSim.

v Chapter 3, “Testing with WSim,” on page 17 describes five types of tests and
explains how you can benefit by testing with WSim.

v Chapter 4, “Creating a test plan,” on page 21presents a systematic approach to
determining test objectives and to designing and writing a test plan for a test.

v Chapter 5, “Determining your system configuration,” on page 27 discusses how
to configure the network you want to simulate and the real system used to run
WSim.

v Chapter 6, “Defining the simulated network,” on page 37summarizes the
planning considerations for coding the network definition statements that define
the network to be simulated.

v Chapter 7, “Creating message generation decks,” on page 45 summarizes what
you need to know to plan the message generation decks that generate messages
for the simulated network.

v Chapter 8, “Running the test,” on page 61 explains the sequence for running
tests and describes the various tools available for operation.

v Chapter 9, “Using WSim output,” on page 71 explains the tools and utilities
available for analyzing the data produced by the test.

v Chapter 10, “Sample files,” on page 81 lists sample files provided with WSim.
v Chapter 11, “Using WSim to measure response times,” on page 83 describes

features that enable WSim to measure system response times.
v Chapter 12, “Summary of logical unit (LU) types,” on page 85describes the

logical units that WSim supports.

Part 2. Operation, provides details about operating WSim.
v Chapter 13, “Introduction to WSim operation,” on page 89 defines WSim and

gives an overview of the information in this book.
v Chapter 14, “Running WSim,” on page 91provides information about the

statements you need to operate WSim on MVS™ or TSO. This chapter also
defines the execution parameters

v Chapter 15, “Using operator commands,” on page 99discusses console messages
and operator commands and explains how to use operator commands when
running on MVS or TSO.

v Chapter 16, “Using operator reports,” on page 117discusses the online reports
printed by WSim.

v Chapter 17, “Controlling message logging,” on page 121 provides information
about logging messages, including how to control, inhibit, and restart message
logging.

v Chapter 18, “Using the Display Monitor Facility,” on page 125 discusses how to
use the Display Monitor Facility to view simulated 3270 display images or
non-3270 data streams on a display accessible from the VTAM* program.

v Chapter 19, “Isolating problems,” on page 133 discusses how to classify, isolate,
and report problems.

v Chapter 20, “Specifying operator commands,” on page 137 lists the operator
commands.

x WSim Workload Simulator: User's Guide

Where to find more information
The following list shows the books in the WSim library. For more information
about related publications, see the“Bibliography” on page 173.

Planning, Installation, and Operation

WSim User's Guide SC31-8948

WSim Test Manager User's Guide and
Reference

SC31-8949

WSim Messages and Codes SC31-8951

Resource and Message Traffic Definition

Creating WSim Scripts SC31-8945

WSim Script Guide and Reference SC31-8946

WSim Utilities Guide SC31-8947

Customization

WSim User Exits SC31-8950

About this book xi

xii WSim Workload Simulator: User's Guide

Part 1. Planning and installation

1

2 WSim Workload Simulator: User's Guide

Chapter 1. Getting started with WSim

This chapter provides an overview of Version 1 Release 1 of Workload Simulator
(WSim). It explains the general sequence you follow during a test and describes
how you can use the other books in the WSim library during testing.

What is Workload Simulator?
Workload Simulator (WSim) is a terminal and network simulation tool. You can
use WSim to determine system performance and response time, to evaluate
network design, to perform functional testing, and to automate regression testing.
Used as a basic tool in a comprehensive test plan, WSim increases the effectiveness
of system testing by providing a structured and systematic approach to all phases
of system testing.

WSim Version 1 Release 1 runs on any IBM® host processor that supports:
v MVS/370 (MVS/SP Version 1 or later)
v MVS/XA (MVS/SP Version 2 or later)
v MVS/ESA (MVS/SP Version 3 or later)
v OS/390

In this book, MVS is any environment running MVS/370, MVS/XA, or MVS/ESA
(unless explicitly stated otherwise).

WSim enables you to test and evaluate teleprocessing systems without needing to
have terminals and terminal operators present. You can use WSim to simulate the
actions of a number of different applications and terminals. These simulated
resources communicate with the real teleprocessing system (referred to as the
system under test) as if they were physically present. No modifications to the
system under test are required.

How do you use WSim?
To use WSim, you write network definition statements that describe the network
configuration to be simulated. You also create message generation decks that send
and receive messages and enable your simulated terminals to take actions based on
message content and network status. The network definition statements and one or
more message generation decks form a script that WSim uses to send messages to
the system under test. WSim then collects the information returned from the
system under test, records that information for further analysis, and uses the
information received to determine what to send to the system under test.

You can use WSim to perform tests that evaluate the reliability and approximate
performance characteristics of a teleprocessing system under expected or projected
operating conditions. That is, you use WSim to simulate a specified network of
resources that generates a specified number and type of messages. WSim reduces
the time and resources needed for testing and improves testing accuracy.

WSim enables the system under test to operate as it would under actual
conditions. You can evaluate your teleprocessing system with a low volume of
message traffic and proceed on an orderly basis to a high volume of traffic.

3

Because your programs and associated hardware are integral parts of the
simulation process, WSim closely approximates a true operating environment.

WSim can generate the same or different messages for multiple terminals. This
ability is especially useful in time-sharing environments. WSim can also simulate
multiple networks concurrently to provide messages to drive multiple
teleprocessing applications or multiple host processors.

What can WSim simulate?
WSim can simulate the following types of resources:
v SNA logical units running as VTAM® application programs
v CPI-C transaction programs
v TPC/IP clients using Telnet 3270, 3270E, 5250, and Network Virtual Terminal

(NVT), File Transfer Protocol (FTP), or simple TCP and UDP protocols attached
to a TCP/IP network via the IBM TCP/IP for MVS product

Conducting tests
The following sections discuss the general sequence you should use during testing
and explain how you can use the other books in the WSim library during the test.
The exact sequence you follow during testing depends on how familiar you are
with WSim, the specific needs of your testing situation, and the operating
procedures used in your organization.

Below is the general sequence of tasks you perform when conducting tests:
1. Install WSim.
2. Plan your test.

a. Define test objectives.
b. Design and write a test plan.

3. Configure your system.
4. Define the network to be simulated.
5. Create the message generation decks.
6. Run the test.
7. Use WSim output to analyze the results.

Note that planning continues throughout the test.

Installing WSim
Installing WSim involves the following steps:
1. Understand the system and installation requirements. WSim is distributed on

tape. The product tape installs WSim under MVS. Your system requirements
vary depending on what system you are running.

2. Follow the specific installation instructions listed in the WSim Program
Directory.

3. Authorize WSim to the operating system.

Refer to Chapter 2, “Installing WSim,” on page 7 for information about completing
each of these tasks. The WSim Program Directory, which comes with the WSim
distribution tape includes the most current information about installing WSim.

4 WSim Workload Simulator: User's Guide

Planning
Before you conduct a test, you need to define the objectives of your test and write
a comprehensive test plan. This book explains what you need to create a test plan
and describes the various utilities, options, and features that are available with
WSim. Read Chapter 3, “Testing with WSim,” on page 17 to learn about the types
of tests you can conduct with WSim. Then, refer to Chapter 4, “Creating a test
plan,” on page 21 for more information about designing and writing a test plan for
tests.

Planning is an extremely important part of testing. In many cases, the success or
failure of a test hinges on how carefully it is planned in advance. You should view
planning as an ongoing task and be prepared to refine your test plan until you
obtain the wanted results. When beginning to use WSim, you should start with a
small network definition and a simple message generation deck. For example, your
first test might simulate a single terminal logging on to the operating system.
Then, you can gradually add more terminals and use more complex message
generation decks until you are simulating the complete network you plan to test.

Configuring your system
Configuring your system involves determining what hardware and software
resources you need and deciding how to arrange these resources. Since the
resources for a test are both simulated and actual, you need to configure both the
simulated network and the actual system. The configuration of the network that
contains the resources you want to simulate (known as the logical configuration)
determines the configuration of the system you use to run WSim (known as the
physical configuration).

Chapter 5, “Determining your system configuration,” on page 27 presents four
steps you can follow to configure your system. It also describes the types of logical
and physical configurations that are used during tests.

Defining the simulated network
After you determine the configuration of your system, you are ready to code the
statements that define the configuration of your network. Chapter 6, “Defining the
simulated network,” on page 37 discusses the general planning considerations for
coding network definition statements. Creating WSim Scripts provides information
about coding the statements for a particular simulation. The WSim Script Guide and
Reference provides reference information about network definition statements and
contains sample network definitions that can help you code your own definitions.
Finally, if you want to perform additional processing of data and manipulation of
network resources, refer to WSim User Exits for information about coding user exit
routines.

Creating message generation decks
After you define the network you want to simulate with WSim, you need to create
message generation decks. Message generation decks define the messages that the
simulated network sends to and receives from the system under test. They also
enable the simulated network to take action based on the messages received.

The content of the message generation decks and the content of the network
definition statements can be interdependent. Therefore, as you create the message
generation decks, you may need to refer to and refine your network definition
statements. You can simplify this task by planning for the interdependencies in
advance. Refer to Chapter 6, “Defining the simulated network,” on page 37 and

Chapter 1. Getting started with WSim 5

Creating Message Generation Decks on page 45 for more information about the
relationships between network definition statements and message generation
decks.

Chapter 7, “Creating message generation decks,” on page 45 also provides specific
planning information for using each of the following methods for creating message
generation decks:
v The Structured Translator Language (STL) and the STL Translator. (For more

information, refer to WSim Script Guide and Reference.)
v Message generation statements. (For more information, refer to Creating WSim

Scripts.)
v Two script generating utilities:

– WSim/IDC
– ITPSGEN

For more information, refer to WSim Utilities Guide.

The WSim Script Guide and Reference provides reference information about the
statements used in message generation decks and contains samples of message
generation decks that can help you code your own message generation decks.

Running the test
After you define the network to be simulated and created the message generation
decks, you should run a sample test using a small configuration and a simple
deck. This process is described in WSim Scripts. Then, after successfully completing
one or more sample tests, you will be ready to run the complete simulation.
Chapter 8, “Running the test,” on page 61 provides details about the planning
considerations for running a sample test and for operating WSim. Refer to Part 2,
“Operation,” on page 87for detailed information about starting, monitoring,
controlling, and stopping simulations. Also refer to WSim Messages and Codes for
explanations of the messages and return codes you may encounter during
operation.

Using WSim output to analyze the results
The final step in conducting a test is to use the WSim output to analyze the results.
Chapter 9, “Using WSim output,” on page 71 provides planning information about
the options available for generating and using output. Refer to WSim Utilities Guide
and Part 2, “Operation,” on page 87 for information about how to use each of these
options.

6 WSim Workload Simulator: User's Guide

Chapter 2. Installing WSim

This chapter provides an overview of things you need to do and questions you
need to answer when installing WSim. It is intended to show you what is involved
before you actually begin.

The step-by-step instructions you should follow once you are ready to install from
tape can be found in the program directory shipped along with the tape.

For detailed information about the sample data sets included with the WSim
installation tape, see Chapter 10, “Sample files,” on page 81.

After you install WSim, you can use ITPECHO to test the installation and to ease
the learning and planning process. ITPECHO is VTAM application program
supplied with WSim as a sample routine. Refer to WSim Utilities Guide for
information about how to use ITPECHO.

Understanding installation and system requirements
Requirements for installing WSim depend on the equipment you have and the
resources you want WSim to simulate. The following sections organize the
requirements for installing and running WSim into the following categories:
v MVS requirements
v General requirements

MVS requirements
The following sections describe the requirements for installing and running WSim
in an MVS environment. On MVS, WSim runs in virtual mode (V=V) or real
memory mode (V=R).

Disk storage space requirements
On MVS, WSim requires disk storage space for partitioned data sets that contain
the following:
v Network definition statements and message generation decks
v WSim host processor load modules
v Network definition statements
v Message generation decks
v Rate tables (optional) referenced by network definition statements
v Panels and CLISTs for the WSim/ISPF Interface
v EXECs, skeletons, and models for the WSim/ISPF Interface.

At least 1500 tracks of 3390 DASD are required to use WSim. If you plan to log
messages to DASD, you may require more disk space for the WSim log data set.
See Part 2, “Operation,” on page 87 for more information about allocating the log
data set.

7

Access method and authorization requirements
WSim uses QSAM (Queued Sequential Access Method), BSAM (Basic Sequential
Access Method), or BPAM (Basic Partitioned Access Method) for tape, disk, and
unit record operations. You can use any devices supported by these access methods
for WSim data sets.

Authorization is optional when using the VTAM application interface to simulate
terminals, but performance will be improved if authorization is provided. Such
authorization enables WSim to use the VTAM authorized path facility. Refer to
“Authorizing WSim on MVS” on page 10 for more information.

General requirements
This section describes the general requirements for running WSim in an MVS
environment. It lists the installation requirements for using the programs,
interfaces, and facilities provided with WSim.

Logging messages
To log the messages sent and received during a WSim simulation, you need at
least one tape drive or disk data set. Refer toChapter 9, “Using WSim output,” on
page 71 and to WSim Utilities Guide for information about logging messages and
formatting the log data set. Refer to Part 2, “Operation,” on page 87 for
information about using operator commands to control message logging.

Printing output
To print output from the various WSim programs, you must have a printer with at
least a 132-character print line.

Using the VTAM Application Program Interface (API)
To use the VTAM Application Program Interface (API) to simulate SNA logical unit
traffic, you must have any currently supported release of VTAM.

Using the CPI-C transaction program support
To use the CPI-C transaction program support to simulate CPI-C client or server
transaction programs (TPs), you must have VTAM Version 3 Release 2 or later.

Using TCP/IP Telnet 3270, 3270E, 5250, or NVT, File Transfer
Protocol (FTP), or simple TCP or UDP client support
To use the TCP/IP Telnet 3270, 3270E, 5250, NVT, FTP, or Simple TCP or UDP
client support to simulate TCP/IP Telnet 3270, 3270E, 5250, NVT, FTP, or Simple
TCP or UDP traffic requires the IBM TCP/IP product Version 2 Release 2 (or later)
for MVS.

Using the Display Monitor Facility
The Display Monitor Facility enables you to display simulated 3270 screen images
on a VTAM-accessible monitor. To use the Display Monitor Facility, you must
define it to WSim by using the DMAPPL execution parameter. You must define it
to VTAM as an APPL in VTAM's VTAMLST. For a full description of these
requirements, refer to Part 2, “Operation,” on page 87

Using the Interactive Data Capture Utility (IDC)
The Interactive Data Capture Utility (IDC) provides a way to capture data from a
3270 display communicating with a host application program and generate a script
from the captured data. To use IDC, you must define it to VTAM as an APPL in
VTAM's VTAMLST. Refer to WSim Utilities Guide for additional information.

The following utilities run in an MVS environment only:

8 WSim Workload Simulator: User's Guide

Using the WSim/ISPF Interface
The WSim/ISPF Interface is a panel-driven ISPF application that provides a
user-friendly interface to most of the functions and utilities of WSim. To use the
WSim/ISPF Interface, you must perform the installation steps as described in
“Installing the WSim/ISPF Interface” on page 12.

Communication controller requirements
To simulate network resources, you can operate WSim in the following physical
configurations:
v VTAMAPPL for simulating VTAM primary and secondary LUs
v CPI-C transaction program for simulating CPI-C client or server transaction

programs
v TCP/IP application for simulating Telnet 3270, 3270E, 5250, NVT, FTP, or Simple

TCP or UDP clients

Chapter 5, “Determining your system configuration,” on page 27 describes these
physical configurations in detail and discusses the types of network resources you
can simulate with them.

VTAMAPPL configuration
In the VTAMAPPL configuration, WSim can simulate primary and secondary
logical units (LUs) in the same subarea as VTAM. However, you can also use the
VTAMAPPL configuration to send and receive messages from simulated resources
in different domains.

CPI-C transaction program (TP) configuration
In the CPI-C TP configuration, WSim can simulate client or server transaction
programs in the same subarea as VTAM. However, you can also use the CPI-C TP
configuration to send and receive messages from simulated TPs in different
domains.

TCP/IP application configuration
In the TCP/IP application configuration, WSim can simulate Telnet 3270, 3270E,
5250, NVT, or FTP clients communicating with Telnet 3270, 3270E, 5250, NVT, or
FTP servers, such as TCP/IP for MVS. WSim can also simulate Simple TCP or
UDP clients communicating with various types of servers.

Printing the WSim program directory
WSim has a program directory shipped with the MVS product distribution tape for
installation on MVS. The program directory contains detailed instructions you need
to install and maintain WSim.

In an MVS environment, you can use the JCL shown below to print a copy of the
WSim Program Directory from the MVS product distribution tape.
//PRPGMDIR JOB
//*- -*
//* SAMPLE JCL TO PRINT WSim PROGRAM DIRECTORY FROM TAPE *
//*- -*
//COPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//TAPE DD DSN=IBM.H281110.F3,DISP=(OLD,PASS),UNIT=TAPE,
// LABEL=(4,SL),VOL=SER=281110
//DISK DD DSN=&&TEMPDS,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(80,(5000,5000,1))
//SYSIN DD *

Chapter 2. Installing WSim 9

COPY INDD=TAPE,OUTDD=DISK
SELECT MEMBER=PGMDIR
/*

//PRINT EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=&&TEMPDS(PGMDIR),DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *
PRINT PREFORM=M
/*

The WSim Program Directory is printed on the printer designated by the
SYSPRINT statement. For example, the following statement designates a printer
with SYSOUT class A:
//SYSPRINT DD SYSOUT=A

Authorizing WSim
The following sections describe how to authorize WSim on MVS and TSO.

Authorizing WSim on MVS
WSim executes more efficiently in the VTAMAPPL and CPI-C environments if it is
authorized using the requirements of the authorized program facility (APF). You
may have to follow several steps to provide system authorization for WSim. For
details, check the planning and user documentation for the system on which WSim
operates. Refer to the MVS/ESA System Program Library: Initialization and Tuning
Guide for program authorization information for MVS.

To be authorized, the WSim load modules must reside in an installation-defined
authorized library or in a private library that you create and authorize, such as
WSIM.SITPLOAD. To authorize a user library, you must add its name to the
IEAAPF00 member of SYS1.PARMLIB or to the corresponding APF data set
indicated in the MVS initialization parameters. The following list shows sample
entries for the IEAAPF xx member in SYS1.PARMLIB that are required to authorize
WSim execution on MVS.

Entry Explanation

WSIM.SITPLOAD yourpack Authorizes the WSim load module.

If WSim runs in a heavily loaded host processor, you may want to mark the WSim
load module ITPENTER as nonswappable. Add ITPENTER to the list of programs
in the program properties table (PPT) and set the correct entry flags. Using
MVS/ESA Initialization and Tuning Reference (GC28-1635) as a guide, code the
following in your SCHED nn member:
PPT PGMNAME(ITPENTER) NOSWAP

Authorizing WSim under TSO
You take two different steps when you authorize WSim to run under TSO. The
following list briefly describes these steps; refer to OS/VS2 System Programming
Library: TSO/E Customization for complete details.
1. If you are installing WSim under TSO/E and the member IKJTSO00 exists in

SYS1.PARMLIB, add the WSim load module ITPENTER to the list of authorized
programs contained in the member IKJTSO00. There are two places where you
need to do this, as shown in the example below.

10 WSim Workload Simulator: User's Guide

.

.

.
/* */

AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +
IEBCOPY /* */ +
ICHDSM00 /* RACF PROGRAMS */ +
ICHUT100 /* */ +
ICHUT200 /* */ +
ICHUT400 /* */ +
ITPENTER /* */ +
JMS /* */ +

) /* */
/* */

.

.

.
/* */

AUTHTSF NAMES(/*PROGRAMS TO BE AUTHORIZED*/ +
/*WHEN CALLED THROUGH THE */ +
/*TSO SERVICE FACILITY. */ +

IEBCOPY /* */ +
JMS /* */ +
ITPENTER /* */ +
IKJEFF76) /* */

/* */

2. If IKJTSO00 does not exist, add the WSim load module ITPENTER to the list
of authorized programs in the control section (CSECT) IKJEFTE8 of the module
IKJEFT02.

Note: TSO/E uses the IKJTABLS module instead of IKJEFT02. The CSECT is
still IKJEFTE8.
You can do this in one of the following ways:
v Zap CSECT IKJEFTE8 of module IKJEFT02 and add the EBCDIC characters

for ITPENTER in the next unused entry.
v Change the source code for CSECT IKJEFTE8 and relink this module.
v Use an SMP/E USERMOD.

3. List the following WSim data set as authorized in the IEAAPF00 member of
SYS1.PARMLIB or the corresponding APF data set indicated in the MVS
initialization parameter.
WSIM.SITPLOAD The load module for WSim.

Notes:

v When WSim runs as an authorized program, all libraries from which it runs
other programs (such as your libraries containing your user exit modules) must
be accessible and must themselves be APF authorized. If you specify these
libraries in the STEPLIB DD statement of your TSO logon procedure, all other
libraries you specify on that STEPLIB must also be authorized. This includes the
ISPF libraries if you specify them there.
Another way you can make the libraries available to WSim is to include them in
the LNKLST00 member of SYS1.PARMLIB, thus causing them to be concatenated
to SYS1.LINKLIB and always available. If you do this, you need not specify the
libraries on the STEPLIB DD statement and libraries you specify there (such as
ISPF libraries) do not need to be authorized.
You can do other combinations, as long as the libraries from which WSim runs
programs are authorized and are still considered authorized when you run
WSim.

Chapter 2. Installing WSim 11

v If you will be using WSim only for VTAM application simulation, you do not
need to authorize WSim on MVS, but WSim will execute more efficiently in the
VTAMAPPL environment if it is authorized.

Installing the WSim/ISPF Interface
After you install WSim, you must do some additional setup to run the WSim/ISPF
Interface. Follow the steps below to install the WSim/ISPF Interface.
1. Concatenate the following WSim data sets into your TSO logon procedure: Add

the following data sets to your TSO logon procedure:

WSIM.SITPPNL Concatenate this data set to the ISPPLIB DD.
WSIM.SITPMSG Concatenate this data set to the ISPMLIB DD.
WSIM.SITPEXEC Concatenate this data set to the SYSEXEC DD statement.
WSIM.SITPTBL Concatenate this data set to the ISPTLIB DD statement.
WSIM.SITPSKEL Concatenate this data set to the ISPSLIB DD statement.

2. Connect the WSim/ISPF Interface to your ISPF/PDF system.
To do this, you must tailor your ISPF/PDF Primary Option Menu to include an
option to invoke the WSim/ISPF Interface. Contact your system programmer to
locate the source of this menu. A sample menu appears in “Installing the
WSim/ISPF Interface.”

12 WSim Workload Simulator: User's Guide

3. Allocate and catalog any data sets you may be using. A WSIM EXEC
(ITP0INST) is provided that allocates all the data sets required by the
WSim/ISPF Interface. This allocates the default data sets for your system and
sets up system defaults for your installation qualifier.

Note: Only run this program once. If you already ran this program and it
failed while allocating your data sets, delete any data sets the program
allocated and run this program again.
Modify this EXEC when you install the WSim/ISPF Interface to set up global
default values for all users of your system and also to adapt to your system.
Places where you should make changes are highlighted with a comment block
stating that you can or should make a change there.
If you do not modify or run this exec, the WSim/ISPF Interface will still run
properly. However, each user of your system may need to set certain default
values from within the WSim/ISPF Interface that this exec defines.
This EXEC creates a data set on your system named
prefix.ITP0INST.SETUPXXX. prefix is the initial qualifier used in defining this
data set. The default is WSIM$$$$. The last 3 characters of the name denote a

%----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
%OPTION ===>_ZCMD +
% +USERID - &ZUSER
% 0 +ISPF PARMS - Specify terminal and user parameters +TIME - &ZTIME
% 1 +BROWSE - Display source data or output listings
% 2 +EDIT - Create or change source data
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke foreground language processors
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO command or CLIST
% 7 +DIALOG TEST - Perform dialog testing
% F +WSIM/ISPF - Invoke WSim/ISPF Interface
% T +TUTORIAL - Display information about ISPF/PDF
% X +EXIT - Terminate ISPF using log and list defaults
%
+Enter%END+command to terminate ISPF.
%
)INIT

.HELP = ISR00003
&ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */

)PROC
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0,’PANEL(ISPOPTA)’
1,’PGM(ISRBRO)’
2,’PGM(ISREDIT)’
3,’PANEL(ISRUTIL)’
4,’PANEL(ISRFPA)’
5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’
6,’PGM(ISRPTC)’
7,’PGM(ISRYXDR) NOCHECK’
F,’CMD(ITP0MAIN prefix)’ /* Entry for WSim/ISPF Interface */
T,’PGM(ISPTUTOR) PARM(ISR00000)’

’ ’,’ ’
X,’EXIT’
*,’?’)

&ZTRAIL = .TRAIL
)END

where prefix is the initial qualifiers for the WSim/ISPF Interface data set. Refer to WSim
Utilities Guide for more information.
Figure 1. Example of updated ISPF/PDF primary option menu

Chapter 2. Installing WSim 13

version/release identifier and a $ sign. Initially, this value is 11$. This data set
lets users run multiple releases of WSim concurrently. Put this data set on a
publicly accessible disk and do not modify this data set.
If this data set exists when you run the WSim/ISPF Interface the first time for
the current release, it uses the values within the data set as defaults. Otherwise,
it uses its own defaults. Specifying the PROFILE execution parameter when
you run the WSim/ISPF Interface also uses the values in the profile data set,
whether this is the first time or not.
The exec ITP0INST allocates the data sets shown in Table 1 with their
associated parameters. You can change the exec, use existing data sets, or
allocate your own data sets using option 3.2 of ISPF/PDF.

Table 1. WSim/ISPF Interface data set allocations

Description Data Set Name Attributes

WSim Networks (INITDD) WSIM.TESTFILE PDS, LRECL=80, SPACE=(8800,(50,25,8)),
UNIT=SYSALLDA, RECFM=FB

WSim Message Decks
(MSGDD)

WSIM.MSGFILE PDS, LRECL=80, SPACE=(8800,(150,50,8)),
UNIT=SYSALLDA, RECFM=FB

STL Input Data Sets WSIM.STLIN PDS, LRECL=255, SPACE=(8800,(250,100,10)),
UNIT=SYSALLDA, RECFM=VB

WSim Scripts WSIM.NETWORK PDS, LRECL=80, SPACE=(8800,(150,50,8)),
UNIT=SYSALLDA, RECFM=FB

WSim Log Data Set WSIM.LOGDATA SEQ, LRECL=8188, SPACE=(8192,(400,400)),
UNIT=SYSALLDA, RECFM=VB, DCB=(NCB=5)

WSim Control Statements and
Commands

WSIM.CONTROL PDS, LRECL=80, SPACE=(8800,(5,3,1)),
UNIT=SYSALLDA, RECFM=FB

WSim IDC Defaults
WSIM.IDCDFLTS SEQ, LRECL=2087, SPACE=(2087,(1,0)),

UNIT=SYSALLDA, RECFM=FB

4. Update the load library name and models qualifier on the SETUP panel in the
WSim/ISPF Interface. If you specified these names as WSIM or if you specified
this in ITP0INST, you need not change them on the SETUP panel.

5. Authorize WSim to run under TSO if you plan on running your WSim
simulations interactively. See “Authorizing WSim under TSO” on page 10 for
instructions on authorizing WSim to run under TSO.

WSim library setup
After you install WSim, you have the following data sets available. The names
shown below are the default names shipped with the product. The names your
installation uses may differ from the ones listed. Contact your system programmer
if you are unsure of these names.

WSIM.SITPLOAD Contains the WSim load library modules.
WSIM.SITPPNL Contains all the panels used by WSim.
WSIM.SITPMSG Contains all the panel error messages used by WSim.
WSIM.SITPEXEC Contains all the REXX EXECs used by WSim.
WSIM.SITPTBL Contains all the ISPF tables used by WSim.
WSIM.SITPSKEL Contains skeleton files used by WSim for building batch jobs.
WSIM.SITPMDLS Contains the model scripts used when creating WSim STL input.

WSIM.SITPMDLM
Contains the model scripts used when creating scripts (networks and
message generation decks).

14 WSim Workload Simulator: User's Guide

Checklist for installing WSim
The following checklist summarizes the steps you follow when installing WSim
and indicates where you can find instructions for performing each step.
1. Plan for installation and system requirements. For more information, see

“Understanding installation and system requirements” on page 7.
2. Install WSim. See WSim Program Directory for specific installation instructions.
3. Plan for authorization requirements. For more information, see “Authorizing

WSim” on page 10.
4. If you are going to run WSim using ISPF, install the WSim/ISPF Interface. See

“Installing the WSim/ISPF Interface” on page 12 for more information.
5. To verify WSim installation, run the sample script named INSTALL1.See

Creating WSim Scripts for a listing of this script.
6. Use the Loglist Utility to analyze the output from running the sample script.

For information about using the Loglist Utility, see WSim Utilities Guide.

Chapter 2. Installing WSim 15

16 WSim Workload Simulator: User's Guide

Chapter 3. Testing with WSim

This chapter describes five types of tests that you can conduct with WSim and
discusses the types of changes you should test. It concludes with information of
the costs of testing. Read this chapter to learn about how you can use WSim in
your organization.

What can you test?
The first step in using WSim is to understand what types of tests you can conduct.
Even if you do not use WSim for all these tests, regard them as starting points for
your plans. You can use WSim for the following types of tests:
v Function
v Regression
v Performance
v Stress
v Capacity planning.

The following sections discuss each of these types of tests.

Function tests
Use function tests to test a function of your system independently of other
functions. This type of test answers the question Does it work right? Some of the
functions that you can test with WSim include new application transactions, logon
and logoff sequences, error transactions, new hardware attachments, and new
software products. For example, you would use a function test to determine if each
function of your new application program works as designed.

A significant advantage to using WSim for function tests is that you can save the
scripts and use them for later regression or stress tests.

Regression tests
Regression tests verify that old functions still operate correctly after you add new
functions or made other changes to the system. You can use this type of test to
answer the question Does it still work right? For example, you could use a
regression test to determine if you introduce errors into your network by installing
the latest version of your application or by changing your network configuration.

There are many advantages to using WSim in a regression test:
v Scripts are repeatable. After you create a script, you can save it in a testcase

library for future use.
v You can use scripts to check for errors in system responses. You can define logic

tests to compare the actual response against the expected response. If there is a
discrepancy, the script can handle the error or write error messages to the
operator console or the log data set.

v WSim can run automatically. After you start the WSim job, execution parameters
and operator commands in the scripts can control WSim operation. A script can
even end the simulation when all the test cases are complete.

17

v You can use the Log Compare Utility to compare the 3270 display records from
two log data sets. This comparison enables you to determine how a change to
the system affects the behavior of IBM 3270 Information Display Systems
without having to compare the log data sets manually.

You do not need to restrict WSim to large comprehensive regression tests. You can
easily use WSim with existing test cases to test routine maintenance changes to
your system.

Performance tests
Performance tests consist of measurement and tuning. When you conduct a
performance test, you measure system performance, tune the system, and then
measure again. You can use this type of test to answer the question How well can I
make it work? For example, you would use a performance test to determine how a
change in region size would affect the performance of your system. To conduct
successful performance tests, you must be able to do the following:
v Measure system performance (for example, throughput or host processor

utilization) at a particular transaction rate and load and with certain system
parameters.

v Change the system parameters.
v Measure system performance again at the same transaction rate and load.

For example, you might measure throughput or host processor utilization before
and after changing buffer sizes or priorities.

There are two major advantages to using WSim for performance tests. First, you
can use WSim to obtain a controlled, repeatable transaction load on the system.
Second, you can use WSim to report terminal response times.

If you are conducting a performance test, you should run WSim in a different host
than you are using for the system under test. Otherwise, the computer resources
needed for WSim operation can impact your results.

Stress tests
Stress tests try to find problems in interactions and resource contentions by driving
the system to extremely high transaction rates. These types of problems might be
missed by single terminal simulations. You can use stress tests to answer the
question What will break first? For example, you might use a stress test to
determine how many users can log on to your system before it is overloaded.

It is nearly impossible to conduct a stress test on an online system without a tool
like WSim. Using WSim, you can generate controlled message traffic at controlled
rates without worrying about coordinating terminal operators or risking a possible
system crash.

If you are conducting a stress test, you should run WSim in a different host than
you are using for the system under test. Otherwise, the computer resources needed
for WSim operation can impact your results.

Capacity planning tests
Capacity planning tests predict how your system behaves when new resources are
brought online. These tests can also intentionally overuse one or more system
resources to determine if the system can perform adequately with a predicted
increased workload. You can use capacity planning tests to answer the question

18 WSim Workload Simulator: User's Guide

What will happen if I add this many resources to my system? For example, you
would use capacity planning tests to predict whether your system will perform
adequately if you add 20 new terminals.

WSim enables you to drive a system with a higher transaction rate than normal
without the need for terminal operators. You can also verify previous capacity
projections with a simulation. In addition, some types of capacity planning tests
are impossible to conduct without using a testing tool such as WSim. WSim
enables you to simulate more terminals or different types of terminals than you
have in your production network.

What should you test?
In general, you should use WSim to test any significant change to your system.
This includes any changes that might affect hardware, system software, application
programs, workload, or environment. Ask yourself the following questions about a
proposed change:
v How complex is the change?
v How many components will be changed?
v How many transactions or transaction types will be affected by the change?
v How many people will be affected by the change?
v How difficult will backup and recovery be after the change?
v What's my past experience with changes of this type?

The answers to these questions help you decide what types of changes you want
to test with WSim.

What is the cost of testing?
In general, the cost of testing is less than the cost of not testing.

The cost of testing includes the expense of test personnel who could be doing
other work, test hardware, and test tools (for example, a WSim license).

What is the cost of not testing?
The costs of not testing or of testing inadequately may include the following:
v More system outages
v More personnel for production system maintenance
v Slower software migration
v End-user dissatisfaction and potential loss of business
v Lost data
v Less new development
v Higher data processing costs
v Missed business opportunities.

The main objective of testing online systems is to find problems before you put the
system into production. It is much less expensive to fix a problem found during
testing than it is to have a system fail during production and then have terminal
operators sitting idle.

Chapter 3. Testing with WSim 19

There is no shortcut to the comprehensive testing of an online system. If your
organization requires a high degree of system reliability, high availability, and good
system performance, then you must dedicate significant effort and resources to
testing.

The resources you need to run a test depend on what type of test you plan to
conduct and how complex your system is. In general, you should treat the setting
up of a test system like an application development program. You need to dedicate
people to designing and developing the test system, but after it is developed you
can often coordinate testing with only one or two people. The amount of time you
need to code the test cases depends on how many different transaction types you
have and how complex each transaction is.

However, as with any application development program, you can reduce the cost
of testing by carefully planning your test in advance and by providing the test
developers with a comprehensive test plan. For more information about creating a
test plan for tests, refer to Chapter 4, “Creating a test plan,” on page 21.

20 WSim Workload Simulator: User's Guide

Chapter 4. Creating a test plan

This chapter presents a systematic approach to creating a test plan for your test. It
emphasizes the importance of establishing test objectives before you plan for a
particular test. Then, it discusses what you need to design a test plan for WSim.
Finally, it describes one way you can organize the information in your test plan.

Establishing test objectives
Before you can plan for or conduct a test, you need to establish objectives for the
test. You should consider why you want to use WSim and what you are trying to
test. You should also consider what results you are trying to achieve. Finally, you
should state your objectives in a clear and concise paragraph or list. Clearly stating
your objectives before you begin planning makes the planning process easier and
enables you to write a more comprehensive and useful test plan. Your statement of
objectives should have two parts:
v Purpose of the test
v Expected results.

These parts are discussed in the following sections.

Purpose
The first part of your statement of objectives describes the purpose of the test. For
example, suppose that you want to determine how well you can make your MVS
system work under conditions of typical use. You want to adjust system
parameters and test the system to find the combination of parameters that
optimize performance. To do this, you decide to use WSim to simulate 60 users
logging on to TSO from different domains in your network. You can adjust system
parameters such as buffer sizes and transmission priorities and repeat the tests
until performance is optimized.

Your statement of purpose should identify the type of test you are planning to
conduct. The type of test can determine where you run WSim. For example, if you
want to conduct a performance or stress test, you should run WSim in a separate
host processor to ensure that WSim operation does not affect the performance of
the system under test. Refer to Chapter 3, “Testing with WSim,” on page 17 for a
complete discussion of the types of tests and their uses and requirements.

Expected results
The second part of your statement of objectives describes the results you expect.
You should try to state the expected results in measurable terms; for example, The
MVS system must be able to handle 60 logon requests in 5 minutes with 95% of
the requests satisfied in 10 seconds each.

Designing a test plan
After you have stated the objectives for your test, you are ready to begin designing
the test plan. The test plan documents the test you want to conduct.

A test plan outlines the steps to follow during the test and provides information
for conducting the test. The form of the test plan and the amount of detail it

21

includes depend on what you are testing, the special requirements of your test
situation, and the procedures used in your organization. Not surprisingly, a test
plan for using WSim to test a new application looks different from a test plan for
testing new network resources. Similarly, a test plan for a very complex regression
test looks different from a test plan for a simple function test.

In general, the more detailed and explicit your test plan is, the easier it will be to
conduct the test. Detailed test plans enable someone who does not know much
about your system or WSim to create the script and conduct the test, whereas less
detailed test plans require a high degree of familiarity with your system and
WSim. Detailed test plans also provide a valuable record of what you did during a
specific test. This record will help you analyze your results and plan future tests.

Before you can write the test plan, you need to decide what types of information it
will include and how you should organize it. To do this, you need to answer a
number of questions. Using your statement of objectives as a guide, answer the
following questions by reading the other chapters in this book and by referring to
the other books in the WSim library:
v What types of resources do you want to simulate?
v What actual resources do you need to conduct the test?
v What types of transactions do you want to test?
v How do you want to run WSim?
v What kind of output do you want to obtain from WSim and how do you expect

to use this output?

The answers to these questions depend on your test objectives and they determine
how you organize and write the test plan. For example, if you are testing new
network resources, you should list specific resources that you want to simulate.
However, you may not need to specify the types of messages that you want these
simulated resources to send. In contrast, if you are testing a new application, the
test plan should include a detailed description of the transactions to be tested.

Writing a test plan
After you have answered these questions, you can begin writing your test plan.
The following sections present one way to organize a test plan for WSim. They
discuss the general types of information you can include in your test plan.
Depending on your situation, you may need to include additional information.

A test plan for a test can include the following types of information:
v Introductory and background material
v Statement of objectives
v Resources needed including:

– Hardware and software
– People
– Time

v Specifications for the following steps:
– Defining the resources to be simulated
– Creating the message generation decks
– Running WSim
– Using WSim output

v Test procedures, including:

22 WSim Workload Simulator: User's Guide

– Entry and exit criteria
– Procedures for conducting sample tests
– Procedures for reporting progress and status
– Schedule.

Regardless of how you organize this information, your test plan should include as
much detail as you need to conduct a successful test. As you gain experience using
WSim, you will find the test plan format that works best for your situation and
your organization. The following sections discuss the various parts of a test plan.

Introduction
Use the introduction to give a high-level overview of what you are testing, why
you are testing it, and who is doing the testing. This section should mention
relevant background information, such as the results of any previous tests. It
should also briefly discuss problems leading to the need for testing, plans for
future tests, and so on.

Objectives
Use the objectives section to list the objectives for the test. As discussed in
“Establishing test objectives” on page 21, you should write a complete statement of
objectives for the test before you design or write the test plan. By stating your
objectives in the test plan, you ensure that everyone involved in the test knows its
purpose and expected results.

In addition to stating the purpose of the test and the expected results, the
objectives section should specify what to do if the expected results are not
achieved. For example, if your MVS system is unable to satisfy 60 logon requests
in 10 seconds each, you might do one of two things:
v Change your objectives
v Attempt to fix the problem and retest the system.

Resources
The resources section of the test plan lists the resources you will use during the
test. The resources for a test include the hardware, software, time, and people
needed to conduct the test.

Hardware and software
The first part of the resources section lists the hardware and software you need to
run the test. This includes resources needed to run WSim as well as the actual
resources in the system under test. The types of resources that you would list in
this section include the following:
v Host processors
v Operating systems
v WSim
v Other telecommunications software such as VTAM or NCP
v Software applications you will use
v Data bases or data sets you will access
v Other monitoring and testing programs.

You should specify the model or release level of each resource as well as any other
information that would be helpful.

Chapter 4. Creating a test plan 23

Time
The second part of the resources section lists the time needed to complete the test.
This includes the time needed to plan for and conduct the test as well as the time
needed to analyze and report the results. If you are using WSim for the first time,
the time section can also include an estimate of the time needed to install WSim,
generate the control programs, and learn to use WSim.

For an example schedule for a test, refer to “Schedule” on page 25.

Staffing
The third part of the resources section lists the people needed to conduct the test.
These include the people needed to install WSim (if necessary), define the network,
create the message generation decks, run WSim, and analyze the results. You may
not need different people for each of these steps, but you should consider each of
these tasks as you plan your staffing needs.

Test specifications
Use the test specifications section of the test plan to describe the specifications for
your test. You can divide this section into the following parts:
v Specifications for defining the network that you want to simulate. This part lists

the resources you want to simulate and may include devices, logical units,
applications, and so on. The amount of detail depends on your situation.

v Specifications for creating the message generation decks. This part describes the
transactions that you want to test and includes any other information needed to
create the message generation decks. Again, the amount and type of detail varies
with each test.

v Specifications for operating WSim. This part lists the utilities, features, and
options that you want to use when you run the test.

v Specifications for WSim output. This part lists the types of output that you want
to get from the test and how you will get them.

Testing procedures
The procedures section describes the general procedures you will use to conduct
the test. It includes information about the following topics:
v Entry and exit criteria
v Sequence of sample tests
v Procedures for reporting problems and status
v Schedule.

Entry and exit criteria
The entry and exit criteria for the test are closely related to the purpose and
expected results for the test. The entry criteria are the conditions that must be met
before you can start the test. For a simple test, this section of the test plan would
list the hardware and software that needs to be operational. For a more
complicated test involving a new application, this section might specify at what
stage of development the application needs to be.

This section also describes the exit criteria, the conditions that must be met before
the test is completed. Exit criteria apply more to function tests than to other types
of tests. For example, the exit criteria for a function test on a new application
might require that all problems be resolved with a permanent fix and that all
testcases be run successfully with the fixes in place.

24 WSim Workload Simulator: User's Guide

Sequence of sample tests
As explained in “Running and analyzing a sample test” on page 61, you should
divide the test into a number of sample tests. These sample tests enable you to test
portions of the script before you run the complete simulation. You can use the test
procedure part of the test plan to describe the sequence of sample tests.

Procedures for reporting problems and status
This part of the testing procedures section describes the procedures that should be
followed to report problems with the system under test, the status of the test, and
the results of the test. By establishing these procedures in advance, you can ensure
that everyone involved in testing knows what kinds of information to be aware of
and what to do when problems arise. This section should include a procedure for
documenting the following:
v Problems with the performance of the system under test

– What the problem is
– Who found it
– Where and how it was found
– When it was found
– How and when it was resolved
– Who fixed it
– Who checked the fix and when

v Status of the test
– What the actual progress is compared to the scheduled progress
– What problems are being encountered

v Results of the test
– What the actual results are
– How they compare to the expected results.

Schedule
The final section of the test plan indicates the schedule to follow during the test.
You should indicate when you plan to begin the test and how long you expect it to
take. You may want to include target dates by which you will complete each
sample test. “Schedule” shows an example schedule for a test that will simulate 60
terminals logging on to TSO.

TASK START DATE

Start planning 6/01
Test plan completed 7/01
Run sample test 1 (one terminal logging on to TSO) 8/01
Run sample test 2 (several terminals logging on) 8/08
Run sample test 3 (60 terminals logging on) 8/22
Run sample test 4 (1 terminal, complicated logon script) 8/29
Run complete simulation (60 terminals logging on, complicated script) 9/06
Analyze results and retest (as needed) 9/20
Report results 10/03

Figure 2. Example schedule for a test

Chapter 4. Creating a test plan 25

Note that the amount of time it takes to conduct a test depends on how complex
your test is as well as on how familiar you are with WSim. If you are using for the
first time, you should schedule additional time for installation and learning.

26 WSim Workload Simulator: User's Guide

Chapter 5. Determining your system configuration

This chapter discusses how to configure your system for a test. When you
configure your system, you determine what hardware and software resources you
need and decide how to arrange them. Once you have configured your system,
you can begin coding the network definition statements and the message
generation decks for your test.

Before you read this chapter, be sure that you are familiar with the definitions of
the following SNA terms and WSim concepts:

Logical unit (LU)
A logical unit is a port through which an end user accesses the SNA
network to communicate with another end user or the system services
control point (SSCP).

Transaction program (TP)
In WSim, a transaction program is any program that uses LU type 6.2
communication protocols to communicate with another program. WSim
implements transaction programs using the Common Programming
Interface for Communications (CPI-C).

Session
A session is a logical connection that enables two network addressable
units to communicate with each other (for example, an LU-LU session or
an SSCP-LU session). Each half of a session is a half-session.

Understanding logical and physical configurations
Before you can conduct a test, you need to configure both the network you want to
simulate and the system you will use to run WSim. The configuration of the
network that contains the resources you want to simulate and the real system you
are testing is called the logical configuration. Depending on what you want to
simulate, you can use one of several types of logical configurations when you
conduct a test. For each logical configuration, you must use a specific physical
configuration, which is the configuration of the system you use to run WSim. This
chapter describes logical and physical configurations in more detail.

Logical configuration
The logical configuration describes how a network that contains the resources you
want to simulate is arranged. It includes the resources that are simulated by WSim
as well as the actual resources you are trying to test. These actual resources make
up the system under test.

For example, if you want to conduct a stress test on your MVS system, the
simulated resources might consist of a number of terminals. If you want to
simulate users accessing a new VTAM application, the actual resource (system
under test) consists of a real host computer running VTAM and the VTAM
applications.

27

Physical configuration
The physical configuration describes how the actual hardware and software
resources needed for a particular test are arranged. These resources include the
resources needed to run WSim and the resources in the system under test. They
can include the following:
v Host processors
v System software, including

– Operating system
– Access method (for example, VTAM)

v Application software
v Test monitoring programs
v WSim.

The next section of this chapter presents an example that demonstrates how to
configure your system for a test. The final section of this chapter provides more
detail about each of the logical and physical configurations you can use during
tests.

Configuring your system
You can use these steps to configure your system for WSim:
1. Determine the objectives for your test
2. Determine what resources you want to simulate
3. Decide how a network containing these resources would be arranged (the

logical configuration)
4. Identify the physical configuration.

After you have determined the logical configuration, you can identify the physical
configuration you need to conduct the test. The physical configuration includes the
resources in the system under test as well as the resources needed to operate
WSim.

You can operate WSim in any of the following physical configurations:

VTAMAPPL configuration
You use this configuration to simulate primary and secondary logical units
in the same subarea as VTAM. These logical units can have a session with
any other logical unit that VTAM will allow a session to be started with.

CPI-C transaction program configuration
You use this configuration to simulate client and server CPI-C transaction
programs (TPs) in the same subarea as VTAM. These TPs can have a
conversation with any other TP on any LU to which VTAM will allow a
conversation to be started.

TCP/IP Application Configuration
You use this configuration to simulate Telnet 3270, 3270E, 5250, NVT, or
FTP clients. These simulated clients can have a session with any Telnet
3270, 3270E, 5250, NVT, or FTP server that TCP/IP allows. This
configuration can also be used to simulate Simple TCP or UDP clients in
session with various servers.

28 WSim Workload Simulator: User's Guide

Summary
You can use this procedure regardless of what you want to simulate. However, the
logical and physical configurations you use depend on what you are simulating.
The next section of this chapter describes the three logical and physical
configurations that you can use for tests in more detail.

Determining logical and physical configurations
Depending on what you want to simulate, you can use one of the following types
of logical configurations in a test:
v VTAM application simulation
v CPI-C transaction program simulation
v TCP/IP application simulation

The following sections of this chapter discuss these logical configuration types and
the corresponding physical configurations required to simulate them. Because you
will probably use only one of these configurations for most of your tests, you can
concentrate on those sections that apply to your specific situation. However, you
will probably want to read the other sections to learn about other ways you can
use WSim.

VTAM application simulation
Figure 3 illustrates the logical configuration of a network in which you want to
simulate SNA logical units that are accessing a VTAM application. These logical
units could represent terminals or other VTAM applications. You would use this
logical configuration to test VTAM applications or subsystems such as IMS/VS,
Customer Information Control System/Virtual Storage (CICS*/VS) or TSO. This
VTAM subarea could be part of a large network with many other nodes.

Figure 3. Logical configuration for VTAM application simulation

Chapter 5. Determining your system configuration 29

The physical configuration that corresponds to this logical configuration is the
VTAM application (VTAMAPPL) configuration, which is shown in Figure 4.

In the VTAMAPPL configuration, WSim runs as a VTAM application program and
uses the standard VTAM Application Program Interface (API). Because VTAM
treats an application program as a logical unit, WSim can simulate logical unit
half-sessions that look like SNA terminals to other VTAM application programs.

WSim does not drive any hardware directly when running exclusively as a VTAM
application. Instead, it uses the VTAM API to send and receive messages,
eliminating the need for any extra hardware resources. To run as a VTAM
application program without a communication controller, WSim requires only a
currently supported release of VTAM and the VTAMLST APPL definitions in
VTAM that enable WSim to communicate with VTAM.

WSim only simulates local SNA logical units within a VTAM subarea. However,
this does not limit a simulated logical unit to same-domain sessions since VTAM
may be able to route data to and from partner logical units in other domains.

When it runs as a VTAM application, WSim can simulate logical unit types 0, 1, 2,
3, 4, 6.1, 6.2, and 7. These logical unit types can participate in primary and
secondary logical unit half-sessions. You can simulate multiple as well as parallel
half-sessions. Refer to Chapter 12, “Summary of logical unit (LU) types,” on page
85 for a description of these logical unit types.

Note that this configuration does not attempt to present entirely realistic terminal
simulation timings since WSim performs the simulation entirely within its
software. Various system components, such as the host processor, operating
system, and even VTAM, know that these are not real physical terminals. However,
WSim presents a logically realistic simulation of local SNA primary and secondary
logical units to the other half-session.

Figure 4. Physical configuration for simulation of a VTAM application or CPI-C transaction
program

30 WSim Workload Simulator: User's Guide

Using the VTAMAPPL configuration
You can use the VTAMAPPL configuration to simulate secondary logical units to
test application programs and network resources. For example, you can use
VTAMAPPL to simulate LU2 terminals accessing real TSO, IMS/VS, CICS/VS, or
Conversation Monitor System (CMS) applications. Or, you can simulate primary
logical units to test application prototypes. For example, you can simulate
application programs that real terminals can log on to.

Figure 4 shows WSim in the same host processor as the application programs. It is
not required that WSim reside in the same host as the real applications that are
being tested. WSim can access applications in another host by using a
channel-to-channel adapter or an NCP. WSim uses the transport mechanisms of
VTAM and the rest of the network so that the traffic can be sent from WSim to any
other node in the network.

When you use the VTAMAPPL configuration, you can conduct stress, performance,
regression, function, or capacity planning tests. This configuration is especially
suited for application testing, where functional specifications and regression
problems are major concerns and network communications or operating system
performance is not. You can test the latter two items in a larger systems test, after
the application changes are fully tested as units, by using WSim with additional
line or subarea simulations.

Testing application development
You can use WSim in at least two ways during application development:
v By simulating secondary logical units, you can test VTAM applications.
v By simulating primary logical units, you can use WSim to simulate an existing

application or as a prototype of a new application.

Testing VTAM Applications: Using this easy method, WSim runs as a VTAM
application program and simulates terminals as secondary logical units. The real
VTAM application program being tested thinks there are live terminals in session.
This allows you to run simple, quick, and precise tests and repeat them as needed
without human operators.

Using WSim as an Application Prototype: WSim can simulate a primary SNA
logical unit through the VTAM API. You can use WSim as an application prototype
before coding begins. You can code panels, command languages, and
decision-making into the scripts. WSim automatically performs all message
handling.

You can derive the following benefits from using WSim as an application
prototype before beginning application coding:
v Real terminal operators can log on to the prototype and assess the design.
v WSim-simulated terminals can also log on to the prototype. Scripts can be

developed and saved for later testing with the real program code.
v The prototype is easily updated with new panels, logic, error messages, and

other changes.
v The prototype does not need to use complex programming to send and receive

messages.

CPI-C transaction program simulation
Figure 5 on page 32 illustrates the logical configuration of a network in which you
want to simulate CPI-C transaction programs (TPs) that are allocating or accepting

Chapter 5. Determining your system configuration 31

conversations with other TPs. These TPs can be client programs (programs that
allocate outbound conversations and do not accept inbound conversations) or
server programs (programs that accept an inbound conversation), or both
(programs that both allocate outbound conversations and accept an inbound
conversation). You would use this logical configuration to test transaction
programs that you want to run on subsystems such as IMS/VS, Customer
Information Control System/Virtual Storage (CICS*/VS) or TSO. This VTAM
subarea could be part of a large network with many other nodes.

The physical configuration that corresponds to this logical configuration is the
VTAM application (VTAMAPPL) configuration, which is shown in Figure 4 on
page 30. In the CPI-C transaction program configuration, WSim runs as a VTAM
application program and uses the VTAM APPC command API to simulate CPI-C
LUs and TPs.

WSim does not drive any hardware directly when running exclusively as a CPI-C
transaction program. Instead, it uses the VTAM API to send and receive messages,
eliminating the need for any extra hardware resources. To run as a CPI-C
transaction program without a communication controller, WSim requires only
VTAM Version 3 Release 2, or later, and the VTAMLST APPL definitions in VTAM
that enable WSim to communicate with VTAM.

WSim only simulates local CPI-C TPs within a VTAM subarea. However, this does
not limit a simulated TP to same-domain conversations since VTAM may be able
to route data to and from partner TPs in other domains.

Note that this configuration does not attempt to present entirely realistic TP
simulation timings since WSim performs the simulation entirely within its
software. Various system components, such as the host processor, operating
system, and even VTAM, know that these are not real physical TPs. However,
WSim presents a logically realistic simulation of local CPI-C TPs to other
transaction programs.

Figure 5. Logical configuration for CPI-C transaction program simulation

32 WSim Workload Simulator: User's Guide

Using the CPI-C TP configuration
You can use the CPI-C TP configuration to simulate CPI-C client TPs to test CPI-C
server TPs and network resources. For example, you can use the CPI-C TP support
to simulate CPI-C client TPs that allocate conversations with real CPI-C server
programs that run on IMS/VS or CICS/VS. Or, you can simulate server TPs to test
client TP prototypes.

Figure 4 on page 30 shows WSim in the same host processor as the transaction
programs. It is not required that WSim reside in the same host as the real TPs that
are being tested. WSim can access TPs in another host by using a
channel-to-channel adapter or an NCP. WSim uses the transport mechanisms of
VTAM and the rest of the network so that the traffic can be sent from WSim to any
other node in the network.

When you use the CPI-C TP configuration, you can conduct stress, performance,
regression, function, or capacity planning tests. This configuration is especially
suited for transaction program testing, where functional specifications and
regression problems are major concerns and network communications or operating
system performance is not. You can test the latter two items in a larger systems
test, after the TP changes are fully tested as units.

Testing application development
You can use CPI-C simulations in at least three ways during application
development:
v By simulating client transaction programs, you can test real servers by providing

them a conversation load.
v By simulating server transaction programs, you can test real clients by serving

the conversation load the clients generate.
v By simulating both client and server transaction programs, you can integrate real

clients or server TPs with simulated TPs. You can use this method also to
simulate a load on the system or network for stress, performance, or capacity
planning testing.

TCP/IP application configuration
Figure 6 illustrates the logical configuration of a network in which you want to
simulate TCP/IP clients in a TCP/IP network. The figure also illustrates the logical
configuration of a network in which you want to simulate Simple TCP or UDP
clients that are accessing an application through a server. You could use this logical
configuration to do any of the following:
v Test Telnet/3270 and 3270E servers and 3270 applications by simulating

Telnet/3270 and 3270E clients
v Test Telnet 5250 servers by simulating Telnet 5250 clients
v Test FTP servers by simulating FTP clients
v Test a variety of TCP applications and servers by simulating Simple TCP or UDP

clients
v See the impact of increased TCP/IP traffic and numbers of clients on your

TCP/IP network and servers.

Chapter 5. Determining your system configuration 33

The physical configuration that corresponds to this logical configuration is the
TCP/IP application configuration, shown in Figure 7.

In the TCP/IP application configuration, WSim runs as a TCP/IP application
program and uses the TCP/IP High Performance Native Sockets API to send traffic
to your TCP/IP network.

WSim does not drive any hardware directly when running exclusively as a TCP/IP
application. Instead, it uses the TCP/IP socket interface to the IBM TCP/IP for
MVS product to send and receive messages, eliminating the need for any extra
hardware resources. WSim requires the IBM TCP/IP for MVS product, Version 2
Release 2 or later.

Using the TCP/IP application configuration
You can use the TCP/IP application configuration to simulate Telnet 3270, 3270E,
5250, NVT, FTP, or Simple TCP or UDP clients to test application programs and
network resources. For example, you can use the TCP/IP application configuration

Figure 6. Logical configuration for TCP/IP client simulation

Figure 7. Physical configuration for TCP/IP client simulation

34 WSim Workload Simulator: User's Guide

to simulate Telnet 3270, 3270E, 5250, NVT, FTP, or Simple TCP or UDP clients
accessing your mainframe applications through a TCP/IP network.

Figure 7 shows WSim in the same host processor as the application programs. This
is not a requirement; WSim can access applications in another host. WSim uses the
transport mechanisms of TCP/IP and the rest of the network so that the traffic can
be sent from WSim to any other node in the TCP/IP network.

When you use the TCP/IP application configuration, you can conduct stress,
performance, regression, function, or capacity planning tests. This configuration is
especially suited for application testing, where functional specifications and
regression problems are major concerns and network communications or operating
system performance is not.

Chapter 5. Determining your system configuration 35

36 WSim Workload Simulator: User's Guide

Chapter 6. Defining the simulated network

This chapter describes what you need to know to define the network you want to
simulate with WSim. You define the simulated network after you have configured
your system.

WSim uses network definition statements and message generation decks to
simulate the activities of a specific network. You use network definition statements
to describe the devices in the network you want WSim to simulate. You use
message generation decks to define the messages that are sent from the simulated
resources in the network to the system under test. A script contains the network
definition statements and one or more message generation decks. This chapter
discusses how you use network definition statements to define the simulated
network; Chapter 7, “Creating message generation decks,” on page 45 describes the
planning considerations for coding message generation decks. You can write STL
programs to define the messages and use the STL Translator to convert these into
message generation decks.

Defining the network and creating the message generation decks can be
interdependent processes because the statements you code in the network
definition can directly affect how and when messages are sent. For this reason, you
may need to coordinate the coding of the network definition statements and the
message generation decks. This is especially true if you are coding very complex
scripts that contain a large network definition and many interrelated message
generation decks. You can coordinate coding in the following ways:
v By modifying your network definition statements as you code the message

generation decks
v By running a number of sample tests before you run the actual simulation. For

more information about running sample tests, refer to “Running and analyzing a
sample test” on page 61.

Naming the network and its resources
Before you code any network definition statements, you should become familiar
with all of the resources you want to simulate and how they are connected to each
other and to the system under test. You need to assign names to the network itself
and to the resources you want WSim to simulate. You code these names when you
define the network and its resources. You use them when you need to refer to
specific resources with other network definition statements or with operator
commands. The names can contain 1 to 8 alphanumeric characters.

In general, you should assign a unique name to each resource in the network. This
makes it easier to refer to that resource later. You must assign unique names to
terminals to use some utilities, such as the Response Time Utility described in
Chapter 9, “Using WSim output,” on page 71. In addition, you should try to use a
consistent and meaningful naming convention throughout the network. This helps
you identify the location of the resource in the network. Finally, you may find it
helpful to match the names in the simulated network to your real network.

37

Using network definition statements
After you become familiar with what you want to simulate, you can code network
definition statements to define the simulated network to WSim. Network definition
statements specify the following information:
v Types of resources in the simulated network (for example, terminals or logical

units)
v Characteristics of these resources (for example, if you are defining a terminal,

you need to specify the terminal type)
v How these resources are connected to each other and to the system under test

(for example, you specify which terminals are on which lines)
v Other features that control how the simulated network sends and receives

messages, including the following:
– Startup delays and message generation delays
– Logic tests for the entire network that are in effect throughout the test
– The order in which message generation decks are used
– Whether you want message logging or message tracing.

The network definition statements you use depend on what logical configuration
you are simulating; that is, you use different statements for VTAM application
simulation, CPI-C transaction program simulation, and TCP/IP application
simulation. This chapter briefly describes the types of statements you use for each
of these types of simulation. For more information about coding the network
definition statements for each of these types of simulation, refer to Creating WSim
Scripts.

Syntax of network definition statements
Network definition statements consist of the following three fields:

Name Contains a label to be used for the statement.

Statement Contains the language statement.

Operand Contains the operands for the statement.

The following example shows the first statement in a network definition:
TESTNET NTWRK MSGTRACE=YES,OPTIONS=(CONRATE)

In this example, TESTNET in the Name field is the name you assign to the
network. NTWRK in the Statement field indicates that you are specifying
characteristics for an entire network. MSGTRACE=YES and
OPTIONS=(CONRATE) in the Operand field specify that you want message
tracing for the entire network and interval report message rates printed at the
operator console when you run WSim.

For more information about the syntax of network definition statements, refer to
the WSim Script Guide and Reference.

Order of network definition statements
When you define the network you want WSim to simulate, you use different
network definition statements depending on what part of the network you are
describing and what type of network you are defining. You must arrange these
statements in a particular sequence.

38 WSim Workload Simulator: User's Guide

NTWRK is the first statement you use to define any network. This statement
names the network and specifies characteristics that apply to the network as a
whole. In addition, it specifies operands that establish defaults for lower-level
statements in the definition. The other statements in the network definition follow
the NTWRK statement in a prescribed sequence.

For example, if you want WSim to simulate SNA logical units that are accessing a
VTAM application, you must arrange the statements in a particular order. The
NTWRK statement comes first. Then, you use a VTAMAPPL statement to define a
VTAM application program in the network. You use an LU statement after the
VTAMAPPL statement to describe a logical unit half session. The final order of the
network definition statements would look like this:
NTWRK

VTAMAPPL
LU
LU

VTAMAPPL
LU

These statements also follow the NTWRK statement in a prescribed order. For
information about these other statements, refer to the following section. For
information about the correct sequence of network definition statements for each
type of simulation, refer to Creating WSim Scripts and the WSim Script Guide and
Reference.

Simulating networks
The following section provides a brief overview of how WSim simulates different
types of networks. It describes some of the network definition statements you use
to define these networks and network resources to WSim. These networks and
network resources include the following:
v Logical units (LUs) that access real VTAM applications using the VTAM

Application Program Interface (VTAM application simulation)
v CPI-C transaction programs (TPs) that allocate or accept conversations with real

TPs
v Telnet 3270 and 3270E clients that access real Telnet 3270 applications (Telnet

simulation)
v Telnet 5250 and NVT clients
v File Transfer Protocol (FTP) clients that access real FTP servers (FTP simulation)
v Simple TCP and UDP clients that access various TCP servers and applications

(Simple TCP Client simulation)

For complete information about each of these types of simulation, refer to Creating
WSim Scripts. For complete information about the syntax of the network definition
statements for each type of simulation, refer to the WSim Script Guide and Reference.

Simulating logical units using the VTAM application program
interface

This section discusses the network definition statements that define logical units
that access real VTAM applications. These logical units could be terminals or other
VTAM applications. For more information about how WSim supports VTAM
application simulation, refer to “VTAM application simulation” on page 29 and to
Creating WSim Scripts.

Chapter 6. Defining the simulated network 39

If you are simulating logical units accessing a VTAM application, you must use
both of the following statements:
v VTAMAPPL statement
v LU statement.

VTAMAPPL statement
Use the VTAMAPPL statement to define a VTAM application program. You must
use either the Name field or the APPLID operand on the VTAMAPPL statement to
specify the symbolic name of the application. This name must match an entry in
VTAM's configuration tables (VTAMLST) that was created using an APPL
definition statement in VTAM. The name specified is either the name of an active
APPL resource or the value of the ACBNAME operand on an APPL statement.

You use the PASSWD operand on the VTAMAPPL statement to specify the
password associated with the symbolic name of the VTAM application. The
password you specify must match the value of the PRTCT operand on the APPL
statement in VTAM.

In addition to the APPLID and PASSWD operands, you can specify other operands
on the VTAMAPPL statement. These operands affect various aspects of the
simulation, including message generation, message logging, SNA simulation,
display simulation, and 3270 simulation.

LU statement
Use the LU statement to define one or more logical unit half-sessions and to
specify the type of half-session to be simulated. You can define primary or
secondary logical unit half-sessions. In addition, you can specify a type of
half-session for secondary half-sessions. Any number of LU statements can follow
the VTAMAPPL statement. WSim simulates each logical unit half-session as a
separate entity (such as a single display, device, or terminal) for message
generation and message logging.

Other operands on the LU statement define logical unit half-session characteristics
that are needed to interpret and generate unique data streams associated with
products such as 3270 devices.

The example below shows a network definition for a VTAM application simulation
containing a simulated secondary logical unit. The network is named VTAMNET,
as defined on the NTWRK statement. INIT=SEC specifies that the simulated
secondary logical unit initiates sessions with the system under test. The WSim
logical unit is known to VTAM as WSIMLU, as defined on the VTAMAPPL
statement. It is known to WSim as USER1, as defined on the LU statement.
LUTYPE=LU2 specifies that the simulated logical unit is a Type two logical unit.
RESOURCE=TSO specifies that the logical unit initiates a session with TSO in the
system under test.
VTAMNET NTWRK INIT=SEC
WSIMLU VTAMAPPL
USER1 LU LUTYPE=LU2,

RESOURCE=TSO

Simulating CPI-C transaction programs

This section discusses the network definition statements that define simulated
CPI-C transaction programs (TPs) that allocate or accept conversations with real
TPs. Because WSim builds its CPI-C TP simulation on its VTAM application
program interface, using a type 6.2 LU, the CPI-C network definition statements

40 WSim Workload Simulator: User's Guide

are similar to the logical unit definition statements. For more information about
how WSim supports CPI-C TP simulation, refer to “CPI-C transaction program
simulation” on page 31 and to Creating WSim Scripts. For more information about
how WSim simulates logical units, see “Simulating logical units using the VTAM
application program interface” on page 39.

If you are simulating CPI-C transaction programs, you must use both of the
following statements:
v APPCLU statement
v TP statement.

APPCLU statement
Use the APPCLU statement to define a CPI-C logical unit. You must use either the
Name field or the APPLID operand on the APPCLU statement to specify the
symbolic name of the logical unit. This name must match an entry in VTAM's
configuration tables (VTAMLST) that was created using an APPL definition
statement in VTAM, and the matching entry in VTAMLST must specify
APPC=YES. The name specified is either the name of an active APPL resource or
the value of the ACBNAME operand on an APPL statement.

You use the PASSWD operand on the APPCLU statement to specify the password
associated with the symbolic name of the VTAM application. The password you
specify must match the value of the PRTCT operand on the APPL statement in
VTAM.

In addition to the APPLID and PASSWD operands, you can specify other operands
on the APPCLU statement. These operands affect various aspects of the simulation,
including message generation, message logging, the number of sessions between
the TPs that can be active concurrently, and CPI-C side information that you want
to apply to all TPs that are defined for this LU.

If your network definition also includes VTAMAPPL statements (to define logical
units that access VTAM applications), all APPCLU statements must precede the
VTAMAPPL statements.

TP statement
Use the TP statement to define one or more transaction programs and to specify
whether the transaction program is to be a client or a server TP. Any number of TP
statements can follow the APPCLU statement. WSim simulates each transaction
program as a separate entity for message generation and message logging.

The example below shows a WSim network definition for a CPI-C TP simulation
containing a simulated client TP. The network is named CPICNET, as defined on
the NTWRK statement. The CPI-C logical unit is known to VTAM as LU1, as
defined on the APPCLU statement. The transaction program is known to WSim as
TP1, as defined on the TP statement. TPTYPE=CLIENT specifies that the simulated
transaction program is a client transaction program.
CPICNET NTWRK
LU1 APPCLU
TP1 TP TPTYPE=CLIENT

Simulating TCP/IP clients
WSim can establish TCP/IP connections that allow simulated clients to access
servers and applications through a TCP/IP network. For this type of simulation,
WSim runs as one or more Telnet 3270, 3270E, 5250, NVT, FTP, or Simple TCP or

Chapter 6. Defining the simulated network 41

UDP clients on the driving system that connect to one or more servers on foreign
(or local) hosts. For more information about TCP/IP client simulation, refer to
Creating WSim Scripts.

To define TCP/IP clients to be simulated, use the following statements:
v TCPIP statement
v DEV statement.

TCPIP statement
Use the TCPIP network definition statement to define a connection to the IBM
TCP/IP for MVS product on the local host. This connection allows WSim to use
the sockets interface to communicate data over a TCP/IP network. The TCPNAME
operand specifies the TCP/IP virtual machine or address space name on the local
host. You can also specify other operands to provide defaults to devices defined on
this connection.

DEV statement
The DEV statement defines a TCP/IP client to be simulated. The TYPE operand is
used to specify which type of client is to be simulated - TN3270 (Telnet 3270),
TN3270E (Telnet 3270E terminal), TN3270P (Telnet 3270E printer), TN5250 (Telnet
5250), TNNVT (Telnet NVT), FTP (File Transfer Protocol), STCP (Simple TCP), or
SUDP (Simple UDP). Multiple clients of varying types may be defined for a single
TCPIP statement. Multiple TCPIP statements with one or more DEV statements
each may also be used. Each client can connect to a different server that can be
specified using the SERVADDR operand. The PORT operand specifies which
TCP/IP port is to be used when establishing the connection for this device. For
Telnet 3270, 3270E, 5250, NVT, and FTP, the default PORT is the well known port
for the protocol being simulated. For Simple TCP and UDP, the default PORT is
256. The FTP protocol normally requires use of the port specified or defaulted and
the next lower port number as well.

The example below shows a network definition for a TCP/IP network that
contains a 3270 device that will log on to the foreign host designated by IP address
9.67.25.1, and will use port 1021, an FTP client that will access an FTP server on a
foreign host designated by IP address 9.67.44.1, and a Simple TCP client that will
connect to a server designated by IP address 9.67.43.62, using port 5555.
TCPIP1 NTWRK
CONN1 TCPIP
DEV1 DEV TYPE=TN3270,

SERVADDR=9.67.25.1,
PORT=1021

DEV2 DEV TYPE=FTP,
SERVADDR=9.67.44.1,

DEV3 DEV TYPE=STCP,
PORT=5555,
SERVADDR=9.67.43.62

Simulating specific devices
In addition to defining different types of networks, network definition statements
can define specific types of devices. As explained in Creating WSim Scripts, when
you use network definition statements to define the following devices, you may
need to consider special coding requirements:
v IBM 3270 Information Display System
v IBM 5250 Display Station.

These coding requirements can include special considerations for the following:

42 WSim Workload Simulator: User's Guide

v Conditions for message generation
v Device-specific special features.

Refer to Creating WSim Scripts for information about the special requirements for
specific devices.

Coding network options
You use optional statements and operands in the network definition to control
many aspects of the simulation. These include the time frame used to start devices
in the network, the order in which message generation decks are used, and the
method used for logging the messages sent and received by WSim during the
simulation. For information about coding these network options, refer to Creating
WSim Scripts and the WSim Script Guide and Reference.

Chapter 6. Defining the simulated network 43

44 WSim Workload Simulator: User's Guide

Chapter 7. Creating message generation decks

Message generation is the process by which simulated terminals send and receive
messages. You use message generation decks to control the messages sent and
actions taken when messages are received by a simulated terminal. This chapter
discusses what you need to consider before you create message generation decks,
describes the methods you can use to create them, and suggests procedures for
testing scripts.

For complete details about how to create message generation decks using these
methods, refer to the following books:
v Creating WSim Scripts

v WSim Script Guide and Reference

v WSim Utilities Guide

Note: Unless otherwise stated, the discussions in this chapter apply to all
simulated terminal types that can generate messages. The terminal type that cannot
generate messages is LU3. The books in the preceding list also give device-specific
information about message generation.

What are message generation decks?
Message generation decks define the messages that WSim generates for a simulated
terminal. A message generation deck is a collection of statements that enables you
to simulate the actions of a terminal and a terminal operator. You can use message
generation decks to generate messages, set intermessage delays, define logic tests,
define and control event actions, and perform miscellaneous functions such as
saving data for later use.

You can code as many or as few statements as you want within a single message
generation deck. In addition, a given terminal can use any number of different
message generation decks in any order you want. For this reason, you can use
message generation decks to group test data for a terminal into logical transactions
or other units of work.

Steps for creating message generation decks
You use the following general steps to create message generation decks:
1. Decide which transactions to test.
2. Decide which application files and what data to use.
3. Create the message generation decks using one of the available methods and

combine them with the network definition to form a script.
4. Test the complete script and modify or revise as needed.

The following sections describe each of these steps in more detail.

45

Deciding which transactions to test
Before you create the message generation decks for your WSim test, you need to
decide which transactions to test. In WSim, a transaction is an exchange of data
between a simulated resource and the system under test. This data exchange
accomplishes a particular action or result. For example, a transaction might involve
recording a customer's deposit and updating the account balance.

The transactions you test depend on the objectives of your test. If you are testing
hardware connections or system software, you are usually not concerned about the
type of transactions you use. Any transaction between the simulated resources and
the system under test is probably adequate for the test. In contrast, if you are
testing an application, you need to select the transactions you want to test
carefully. You usually do not need to test all of the transactions in the application;
however, you should try to test the most important ones. These could be those
transactions that:
v Take the most host processor time (for example, sorting).
v Generate the most messages. Remember the 80-20 rule: 80% of the messages

probably come from 20% of the transactions.
v Are the most important for your organization. For example, if you are testing a

banking application, you might want to test transactions involving the automatic
teller machines.

In addition to deciding which transactions you want to test, you need to consider
the following:
v The content of the messages you want to send
v The messages you expect to receive back
v The transaction mix (that is, the order in which the transactions are executed

and which terminals participate in each transaction)
v The transaction rate.

The following sections briefly describe each of these considerations.

Considering what messages you want to send
After you determine the transactions you want to test, you need to consider what
kinds of messages you want the simulated resources to send to the system under
test. The content of these messages depends on the following:
v The types of transactions you are testing
v The types of terminals WSim is simulating.

For example, suppose you want WSim to simulate a 3270 terminal accessing a
banking application. In this example, a typical transaction might include entering a
deposit and updating the account balance. The actual data sent to the banking
application is the account number, the amount of the deposit, and so on. However,
the message generation deck for this transaction would also need to indicate such
user actions as pressing the Tab key to move to the next field or pressing the Enter
key to send a completed panel.

In other words, before you can code the message generation decks, you need to
determine what the user would type in order to complete the transaction. This
information could be actual data (for example, account numbers or text strings

46 WSim Workload Simulator: User's Guide

such as Hello. How are you?) or it could represent the type of information that is
sent to the system under test when a user presses a specific key on the keyboard
(for example, Tab or Enter).

Considering what messages you expect to receive
You also need to decide what messages you expect to receive back from the system
under test. You can test for the expected responses by coding logic tests into your
scripts. These logic tests consist of statements that test for a certain response from
the system under test and take a particular action based on the response. For more
information about logic tests, refer to Creating WSim Scripts or WSim Script Guide
and Reference.

Note: Logic tests can also test the messages sent by a simulated resource to the
system under test.

Considering the transaction mix
In addition to considering the messages you want to send and expect to receive,
you also need to consider the transaction mix. The transaction mix is the order in
which WSim executes the message generation decks as well as which terminals use
which decks. For example, if you are conducting a stress test, you may want some
terminals to log on to and off of the operating system repeatedly, while other
terminals are completing more complex transactions. You can specify this mix of
transactions in the network definition by using PATH statements and the PATH
operand. The PATH statement specifies the order in which the decks will be
executed, while the PATH operand indicates which paths a specified resource will
execute.

In the example below, the path named SIMPLE specifies that the INITSESS deck
will be processed before the LOGOFF deck. The path named COMPLEX specifies
that the INITSESS deck will be processed before the message generation decks
named ALLOC, EDIT, DELETE, and LOGOFF. The PATH operands on the DEV
statements indicate that DEVICE1 will execute the SIMPLE path and DEVICE2 will
execute the COMPLEX path. Note that the vertical ellipses indicate that there may
be other network definition statements that are not shown in this example.
TESTNET1 NTWRK

.

.

.
SIMPLE PATH INITSESS,LOGOFF
COMPLEX PATH INITSESS,ALLOC,EDIT,DELETE,LOGOFF

.

.

.
DEVICE1 DEV PATH=(SIMPLE)
DEVICE2 DEV PATH=(COMPLEX)

The paths that you define are selected and executed repeatedly. When a terminal
has executed the last deck in the last path defined for it, it starts again with the
first deck in the first path. Each terminal maintains its own position in the path
and is not affected by other terminals. However, you can use BRANCH, CALL,
and IF statements in your message generation decks to alter this sequence. You can
also define the order in which WSim selects the message generation decks listed on
a PATH statement. You can define a certain order, a random order, or a probability
distribution.

Chapter 7. Creating message generation decks 47

When you conduct a test, start by coding a simple transaction. This transaction
may include one or more message generation decks. Combine this transaction with
a simple network definition and run a sample test to ensure that the transaction
works correctly. Then, add additional transactions and more complex network
definitions until you have the transaction mix you want. Be sure to verify each
transaction separately before combining it with other transactions.

For more information about using the PATH statement and the PATH operand,
refer to WSim Script Guide and Reference and Creating WSim Scripts.

Considering the transaction rate
Finally, you need to consider the rate of transactions. With WSim, you can create
increasingly complex situations by coding intermessage delays. An intermessage
delay is the period of time that WSim waits, or delays, between the messages it
sends to the system under test. You can use these delays to simulate the delays
that real operators make as they view the screen, think about the information, and
enter more data.

WSim provides a number of network definition and message generation statements
for defining intermessage delays. You can control intermessage delays for a specific
resource or for the entire network. You can even define delays on a
message-by-message basis. In addition, you can specify multiple intermessage
delays with the UTI statement. For a complete explanation of how to code
intermessage delays, refer to Creating WSim Scripts or WSim Script Guide and
Reference.

Deciding which application files and data to use
After you decide which transactions to test, you need to decide what application
files you will use and what data should go into those files. You may want to use a
copy of your production database for the test; however, you can often conduct the
test using a small test database that contains a representative sample of the
production database. The data that you include in this test database depends on
the objectives of your test. For example, if you are testing a full-screen application,
you may want to provide the application with a file that it can edit during the test.

Creating message generation decks
After you have decided what transactions you want to test and what application
files and data you want to use, you are ready to create the message generation
decks for your test. First, spend some time listing the steps in the transactions you
are testing. You can list these steps using ordinary English statements or
pseudocode. Listing the steps helps ensure that you completely understand the
transactions before you spend time coding message generation decks. It also
provides you with a detailed set of instructions that real terminal operators can
follow if you decide to trace system activity.

Then, decide what method to use to create the message generation decks. You can
use any of these methods to create message generation decks for WSim:
v Write message generation statements
v Write Structured Translator Language (STL) programs and use the STL

Translator to generate message generation decks
v Use one of the script generating utilities available with WSim to convert

captured data traces into message generation decks or create actual messages.
WSim script generating utilities include:

48 WSim Workload Simulator: User's Guide

– Interactive Data Capture (also produces STL programs)
– Script Generator Utility
– ITPLU2RF
– TCP/IP Trace STL Generation Utility

The method you use depends on what you are testing as well as the following:
v How familiar you are with WSim. If you are a new user, you should use STL

and the STL Translator or one of the script generating utilities.
v What kind of messages you want WSim to send to the system under test. For

example, if you want to simulate a number of real users using your application,
you might trace actual system activity and use the Script Generator Utility to
convert the trace records into message generation decks.

v What stage of development your application is in.

Note that you may need to use several of these methods to create message
generation decks for your simulation. For example, the message generation decks
created by the Script Generator Utility generally need to be modified before you
can use them. You can use message generation statements to do this.

The following sections describe each of the methods in more detail and provide
information to help you select the best method for your situation. For more
information about using each of these methods, refer to Creating WSim Scripts,
WSim Script Guide and Reference, or WSim Utilities Guide.

Using message generation statements
As explained in the beginning of this chapter, message generation decks are
composed of message generation statements. In most situations, you can use STL
or one of the script generating utilities to create the message generation decks for
your test, so you do not need to code the actual message generation statements.
However, you need to understand these statements to interpret the output from
the STL Translator and the script generating utilities. This is especially true if you
are trying to debug your scripts.

In addition, there are certain instances when you need to code message generation
statements by hand. These instances include the following:
v When you are modifying the output created by one of the script generating

utilities
v When you want to incorporate additional message generation decks in a script

produced by the STL Translator or one of the script generating utilities
v When you want to send certain types of messages from a non-3270 device
v When you want to set up SNA chaining explicitly
v When you want to modify message generation decks created with a previous

version of WSim.

The syntax for message generation statements is the same as for network definition
statements. Refer to “Using network definition statements” on page 38 or the WSim
Script Guide and Reference for an explanation of the syntax of message generation
statements and network definition statements. For more information about coding
message generation statements, refer to Creating WSim Scripts.In addition, Creating
WSim Scripts includes several examples that may help you understand how to code
these statements.

Chapter 7. Creating message generation decks 49

111

After you have coded your message generation statements, you should preprocess
them using the Preprocessor. The Preprocessor checks the syntax of the statements
and stores them in data sets for use during the simulation. For more information
about the Preprocessor, see “Preprocessing the script” on page 61.

Using the Structured Translator Language and the STL
Translator

The Structured Translator Language (STL) is a high-level, structured programming
language that you can use to create message generation decks and define terminals
and devices you want to simulate using WSim. Like other structured languages,
STL uses constants, variables, expressions, and structured control statements in its
programs.

Whether you are a new or experienced user, you may find it convenient to write
new message generation decks using STL. STL enables you to program using
familiar programming structures and conventions. Because of its similarity to other
programming languages, STL is easy to learn and it enables you to write message
generation decks quickly and accurately. If you like, you can incorporate message
generation statements into STL programs.

Typically, an STL program is divided into one or more procedures, which are
similar to subroutines in other programming languages. The STL Translator
translates STL programs into message generation decks. Each message generation
deck is equivalent to one STL procedure. Thus, an STL program can be translated
into more than one message generation deck.

Note: You can also include network definition in STL input data sets. The STL
Translator invokes the Preprocessor to validate and store these statements for you.

Sample STL program
Below shows two sample STL programs each containing one STL procedure. Each
procedure begins with an MSGTXT statement and ends with an ENDTXT
statement. The name of the procedure appears in front of the MSGTXT statement.
/* STL program used to log terminal on to MYAPPL. */
Logon: Msgtxt
Initself(’MYAPPL’)
Endtxt

/* STL program used to test message generation. */
Test1: Msgtxt
Do i = 1 to 5

Type "Hello"
Transmit using PF1,

and Wait until onin substr(screen,4,17) = "Hello to you too."
End
Endtxt

In this example, the first STL procedure, named LOGON, defines the text that a
terminal would use to log on to an application named MYAPPL. The second STL
procedure, named TEST1, defines messages that you might use to test message
generation. When it executes TEST1, WSim simulates a user typing “Hello” and
then pressing PF1 to send the message to the application. WSim would then wait
until the application's response “Hello to you too.” appeared at position 40 on the
screen. The DO statement indicates that these messages should be sent and
received five times.

50 WSim Workload Simulator: User's Guide

Before you can use this STL program with WSim, you must use the STL Translator
to translate it into message generation statements. You then combine these message
generation decks with network definition statements to form a script for the
simulation. For more information about writing STL programs, refer to WSim Script
Guide and Reference.

Using the STL Translator
The STL Translator is a utility that translates STL programs into message
generation decks. The input to the STL Translator consists of an STL source data
set. You can run the STL Translator using the WSim/ISPF Interface, JCL, or a TSO
CLIST. WSim Script Guide and Reference provides examples of running the STL
Translator in each of these situations and discusses the execution parameters you
use to run the utility.

The output from the STL Translator consists of the following:
v Printed listing of the message generation statements and the STL source

statements.
1. STL Translator listings:

– Includes all error messages
– Includes source statements, unless NOSOURCE is specified
– Includes message generation statements, unless NOWSIM is specified
– Includes a variable dictionary
– Includes a statistics report

2. Preprocessor listings:
– Includes all error messages
– Includes the Preprocessor listing, unless NOLIST is specified
– Includes a cross-reference report, unless NOXREF is specified
– Includes a network definition summary, if SUMMARY is specified.

v Optionally, INITDD partitioned data set members containing network definition
statements.

v Optionally, MSGDD partitioned data set members containing message
generation statements. These data set members do not need to be preprocessed
by the Preprocessor before you use them to run WSim.

v Optionally, a sequential output file containing the message generation statements
and the STL source statements.

v Optionally, a partitioned data set member containing the STL variable table and
a listing of the correlations between the STL statements and the message
generation statements. The contents of this data set member are used by the
Loglist Utility when it prints STL trace records and by the Q operator command
to display the STL statement numbers. (Refer to “Using STL trace records” on
page 57 for information about STL trace records.)

WSim Script Guide and Reference provides more information about using the output
produced by the STL Translator.

Using the Interactive Data Capture Utility (ITPIDC)
The Interactive Data Capture Utility (IDC) ITPIDC is a host application that gives
you an easy way to interactively capture 3270 device session data and generate
scripts. To use Interactive Data Capture, you simply log on to it, much like any
other VTAM application. You can also start IDC on your TSO ID and utilize the
TSO console. Then, through Interactive Data Capture, log on to the VTAM

Chapter 7. Creating message generation decks 51

application you want to test and perform the actions you want WSim to simulate.
Interactive Data Capture remains transparent to your application while it captures
session traffic.

When you are done, you tell Interactive Data Capture to generate either WSim
message generation decks or an STL program from the captured data.

Using the Script Generator Utility
The Script Generator Utility enables you to create message generation decks that
are based on traces of real users using a real application. To use this utility, you
must put the captured trace in a specified format and sort it by resource name,
date, and time. You then use the sorted trace as input to ITPSGEN, the utility
program that actually generates the message generation decks.

When you use the Script Generator Utility, you follow these five steps:
1. Obtain a trace of users using your application.
2. Reformat the trace output if it is not in the format required by the Script

Generator Utility.
3. Sort the reformatted output using any standard sort program.
4. Define the network using network definition statements.
5. Generate the message generation decks for that network using ITPSGEN.

Figure 8 on page 53 shows the programs you can use for each of these steps. The
following sections describe these steps in more detail. Refer to WSim Utilities Guide
for complete information about these steps.

52 WSim Workload Simulator: User's Guide

Obtaining a trace of system activity
As indicated in Figure 8, you can use several methods to obtain a trace of system
activity:
v The NetView® Performance Monitor (NPM) captures path information units

(PIUs) for selected logical units.
v The VTAM Buffer Trace with the Generalized Trace Facility (GTF) traces system

activity.
v User-written capture routines trace other forms of system activity.

Reformatting the trace output
If the trace of system activity is not in the format required by ITPSGEN, you must
reformat it before you can use it to create message generation decks. WSim
provides a program (ITPVTBRF) to help you reformat trace output. For more
information about this program, refer to WSim Utilities Guide.

Sorting the trace data
Before you use ITPSGEN, you must sort the trace data into ascending order based
on the name, date, and time fields. You can sort the data using any standard sort
program.

Figure 8. Generating scripts with the script generator utility

Chapter 7. Creating message generation decks 53

Defining the network
The network definitions you use as input to ITPSGEN should be complete,
syntactically correct networks. For more information about checking the syntax of
statements, refer to “Preprocessing the script” on page 61.

ITPSGEN uses the network definition statements to determine the terminal names
for which decks are generated. These names, taken from the DEV and LU
statements in the network definitions, must correspond to the resource names used
in the trace data set. For this reason, when you use ITPSGEN, be sure that your
network definition statements do not contain duplicate names.

Generating message generation decks with ITPSGEN
ITPSGEN creates message generation decks from sorted trace data sets. It can also
update the network definitions to reflect the message generation decks generated.
To run ITPSGEN, you need a sorted trace data set and at least one WSim network
definition. You can also include control statements and additional network
definition statements. For examples of the WSim/ISPF Interface, JCL and TSO
CLISTs needed to run ITPSGEN, refer to WSim Utilities Guide.

The output from ITPSGEN includes the message generation decks as well as
reports and updated network definitions. In addition, ITPSGEN can create a
sequential data set that contains all message generation decks and network
definitions.

Capturing terminal traffic
The quality of the scripts created by the Script Generator Utility cannot be better
than the actual traffic traced. In other words, if you trace system activity that does
not represent the type of use you want to test, the scripts created by the Script
Generator Utility may not be useful. For example, you may not want to trace
system activity early in the day (when many users are logging on to the system),
at lunch time (when many terminals are unattended), or at the end of the day
(when many users are logging off of the system).

The following section describes two methods for capturing the messages sent from
a terminal. For more information about these methods, refer to WSim Utilities
Guide. That book also gives solutions for typical problems you may encounter
when you use the Script Generator Utility.

Note: The Script Generator Utility creates a script that is based on a specific
functional level of the application. For this reason, changing the application may
make the script unusable.

Capturing Single Terminal Traffic: This method enables you to test a particular set
of transactions and is easily controlled. You would use this method if you wanted
to test specific application functions.

To capture traffic from a single terminal, follow these steps:
1. Identify a single terminal and operator whose traffic you want to trace.
2. Start the capture routine.
3. Have the operator log the terminal on to the application, execute the

transactions, and log off.
4. Stop the capture routine.
5. Reformat and sort the captured data.
6. Define the network using network definition statements.

54 WSim Workload Simulator: User's Guide

7. Run ITPSGEN to obtain one message generation deck that contains all of the
messages sent by that terminal.

8. Modify the network definition statements and message generation deck, if
desired, and create a script.

9. Run WSim using your script as input.

You may want to modify the message generation deck produced by ITPSGEN to
ensure that the simulated terminals do not access the same data base records. To
do this, first divide the deck into smaller decks that contain only one transaction
each. This makes it easier to create transaction mixes. Then, add some variable
data to the decks. You can do this by finding where a user variable (such as an
account code or part number) was entered and replacing it with a reference to a
user table. You can select entries from a user table sequentially, randomly, or by
using a probability distribution. For more information about using user tables,
refer to Creating WSim Scripts and WSim Script Guide and Reference.

Capturing System Terminal Traffic: This method enables you to capture actual
traffic sent by the all the terminals in the system. You might use this method if you
wanted to conduct a stress test on your application.

To capture all the terminal traffic within the system, follow these steps:
1. Start the capture routine.
2. Start the host application.
3. Capture the terminal traffic for a specified amount of time.
4. Stop the capture routine.
5. Reformat and sort the captured data.
6. Define the network using network definition statements.
7. Run ITPSGEN to produce the message generation decks for each terminal.
8. Modify the network definition statements and message generation deck, if

desired, and create a script.
9. Run WSim using your script as input.

Although capturing system terminal traffic can be a very useful method, there are
several potential disadvantages to using it. First, tracing many terminals at once
may adversely affect the performance of your system. Second, the transactions
entered by the terminal operators may not be the type required for the test. This is
because the actions of each terminal are not under your control. Finally, the scripts
generated from these traces may not work correctly unless you modify them. This
is because the traces capture the data that is received by the host. WSim, on the
other hand, defines keystrokes. Since ITPSGEN tries to re-create keystrokes based
on the data sent to the host, keystrokes that are not sent to the host (such as a local
clear) will not be accounted for in the message generation decks. As a result, the
script may not work as planned.

Using SNA 3270 Reformatter Utility (ITPLU2RF)
ITPLU2RF is a batch utility that reformats NPM log records (FNMVLOG) from LU
type 2 sessions into log records. You can then run the following utilities directly:

ITPLSGEN Create STL programs or message decks.
ITPLL Create a loglist.
ITPCOMP Compare log display records.
ITPRESP Create response-time reports.

Chapter 7. Creating message generation decks 55

ITPLU2RF also provides reports about the LU type 2 sessions from the NPM log,
showing statistics on records counts, data lengths, and time stamps.

Using the TCP/IP Trace STL Generation Utility

You can create STL programs from a TCP/IP trace by using the TCP/IP Trace STL
Generation Utility. The TCP/IP trace contains records for HTTP messages that are
exchanged between a client and a server that runs on z/OS.

To help you obtain a TCP/IP data trace of the communication between a client and
server, WSim provides the TCP/IP Data Trace Utility (ITPIPTRX).

Obtaining a TCP/IP trace

You can start and stop TCP/IP data and packet traces by using the V TCPIP
command that is issued from a z/OS system console.

If you cannot issue the V TCPIP command, you can use the TCP/IP Trace Utility
(ITPIPTRX) to create a TCP/IP data trace of the communication between a client
and server.

For more information on TCP/IP Trace Utility, refer to the WSim Utilities Guide.

Generating STL from a TCP/IP trace

The TCP/IP Trace STL Generation Utility program ITPIPGEN creates an STL
program from the trace records for the HTTP messages that are exchanged
between a client and a server that is running on z/OS.

For further information on running ITPIPGEN, refer to WSim Utilities Guide.

Testing scripts
Once you have created the message generation decks for your simulation, you
need to test them to ensure that they are coded correctly and that they function as
you intended. You can check statement syntax by using the Preprocessor or the
STL Translator. (Refer to “Preprocessing the script” on page 61 and to WSim
Utilities Guide for information about the Preprocessor; refer to WSim Script Guide
and Reference for information about the STL Translator.) Then, you can ensure that
the message generation decks function as you intended by using one or more of
the following methods during the simulation:
v Message trace records to trace the message generation process
v STL trace records to trace the message generation process for STL programs
v Self-checking scripts.

The following sections briefly describe each of these methods.

Using message trace records
You can use the message trace (MTRC) records in the log data set to trace the
activity caused by specific message generation statements. To obtain these records,
you must take the following steps:
1. Specify MSGTRACE=YES in the network definition or with the A (Alter)

operator command. This causes message trace records to be written to the log
data set.

56 WSim Workload Simulator: User's Guide

111

111
222
111

111
111

111

111
111

111
111
111

111

111

111
222
111

111

2. Use the Loglist Utility to format and print these records.

Message trace records show the steps taken through the message generation deck.
They also indicate the action or inaction of logic test IF statements. You can use
these records when you are trying to test and debug message generation decks and
the associated logic tests. They are especially useful when you are learning to write
scripts. For more information about using these records, refer to Creating WSim
Scripts. For more information about using the Loglist Utility, refer to WSim Utilities
Guide.

Using STL trace records
You can use the STL trace (STRC) records in the log data set to trace the activity
caused by specific STL statements. To obtain these records, you must take the
following steps:
1. Request that the STL Translator create correlation records by using the

PROGRAM= execution parameter or the @PROGRAM statement in your STL
program. These records correlate a message generation statement with the STL
statement that produced it.

2. Specify STLTRACE=YES in the network definition or with the A (Alter)
operator command. This causes STL trace records to be written to the log data
set.

3. Use the Loglist Utility to format and print the records.

STL trace records are similar to message trace records and can be used when you
are trying to test and debug message generation decks that were created with STL
and the STL Translator. These records are especially helpful when you are learning
to write STL programs. For more information about STL trace records, refer to
WSim Script Guide and Reference. For more information about using the Loglist
Utility, refer to WSim Utilities Guide.

Using self-checking scripts
Although you should test and debug your scripts as you write them, doing so is
not always enough to ensure that unexpected situations will be handled correctly.
Consider, for example, some of the problems that can occur during a test:
v The logon can fail. This could be caused by new or expired passwords, too

many users, unavailable applications, unavailable routes, and so on.
v A message from the operator can appear on a simulated VM panel. This causes

the screen to enter the HOLDING state, so subsequent transactions are not
accepted.

v The system can change between two test runs. This could be caused by a
problem with a data set, a different response message, or authorization
modifications.

v A timing difference can exist because of a heavily loaded host processor. If the
system does not respond fast enough, another message can be transmitted by
the terminal causing the session to become out of synchronization.

These are just a few simple examples of problems that can arise during the
simulation. Self-checking scripts help guard against unexpected problems by
verifying that a terminal session is proceeding as expected.

You do not need to use self-checking scripts for all simulations. However, you
should consider the consequences of not using them. In other words, what
happens if you do not notice a simulation problem in a timely manner? If you are

Chapter 7. Creating message generation decks 57

running short and simple simulations, you can probably detect errors yourself very
easily. On the other hand, if an eight-hour test run is wasted because terminals are
out of synchronization, then preparing self-checking scripts may be well worth the
effort.

In these situations, you should use self-checking scripts to guard against wasted
time. In addition, you should use self-checking scripts when you are testing the
functions of new or changed applications. Self-checking scripts can assist you in
debugging these applications by doing the following:
v Detecting errors sooner than otherwise possible
v Detecting errors that otherwise would not be detected.

Writing self-checking scripts
When you create a self-checking script, you add IF statement logic tests to the
script to check for the expected response and to take action if an unexpected
response is received. The action can be as simple as stopping the device or as
complex as choosing from several possible courses of action based on what was
actually received. You can code these logic tests in hand-written message
generation decks as well as in decks created by STL or one of the script generating
utilities. In addition, you can code logic tests in the network definition.

Below shows an example of a message generation deck with self-checking logic
that causes the system to wait for the expected response. In this example, WSim
sends Message 1 to the system under test and waits until Reply 1 is received
before continuing. After receiving Reply 1, Message 2 is generated and sent to the
system under test. WSim waits for Reply 2 before continuing to the end of the
message deck.
DECK5 MSGTXT
* Beginning of DECK5.
MSG1 TEXT (MESSAGE 1) Defines MSG1.
0 IF LOC=B+0,

TEXT=(REPLY 1),
THEN=CONT

WAIT1 WAIT
MSG2 TEXT (MESSAGE 2) Defines MSG2.
0 IF LOC=B+0, Defines basic logic test.

TEXT=(REPLY 2),
THEN=CONT

WAIT2 WAIT
ENDTXT End of DECK5.

For a complete explanation of how to produce self-checking scripts by coding logic
tests in the message generation decks, refer to Creating WSim Scripts or WSim Script
Guide and Reference. Creating WSim Scripts provides more information about coding
IF statements that apply to the entire network.

Detecting problems without self-checking scripts
There are a number of indicators you can use to track the progress of a test
without using self-checking scripts. However, as explained in the following list,
each of these methods has potential disadvantages:
v The Loglist Utility. This utility tells exactly how the simulation ran. Its primary

drawback is that you run it after the simulation is over. In addition, the output
from the Loglist Utility is sometimes too long to read in complete detail.
Therefore, problems can go undetected.

v The Log Compare Utility. This utility enables you to compare 3270 display
records from two log data sets. You can use it to detect incorrect data, data in
the wrong position, and panels in the wrong order. Its primary drawback is that

58 WSim Workload Simulator: User's Guide

you run it after the simulation is over. In addition, you must have log data sets
from two different WSim runs to detect any problems.

v Display Monitor Facility. This facility enables you to see the display image of a
simulated 3270 display device or logical unit Type 2 terminal during the
simulation. You can use it to monitor simulations involving those terminal types;
however, it may be impractical as a verification tool if large numbers of
terminals are being simulated.

v Message rates. WSim can display send-and-receive message rates during the
simulation. If these rates are high and remain stable, then everything may be
running as expected. However, message rates cannot tell you if the simulated
terminals are out of synchronization.

v Query command output data. You can use the Q operator command to query a
terminal during the simulation; however, it is unlikely that you will query your
terminal at the exact instance that a problem occurs.
You can also use the G (Terminal Status Query) operator command during the
simulation to find out which terminals are active, inactive, quiesced, terminated,
or ready. However, the G command cannot tell you why a terminal is inactive or
how long it has been inactive.

v Terminal hang situations. If you notice that a terminal has unexpectedly stopped
sending and receiving messages, you know that there is a problem. However, it
may take appreciable effort to find the cause of the problem and correct it.

v Operating system messages. Messages on the operating system console can warn
you about some problems, but they cannot tell you what the problem is.

v Scan function. When you code the SCAN operand on the NTWRK statement,
WSim examines all of the terminals and devices in the network each minute.
WSim can notify the operator of inactive terminals. Although you can code
message generation decks that will attempt to recover inactive terminals
automatically, using the scan function does not tell you why the terminal
became inactive.

v Application program abnormal ending. This is a sure sign of a problem.
However, more subtle problems can exist without causing abnormal endings.

Chapter 7. Creating message generation decks 59

60 WSim Workload Simulator: User's Guide

Chapter 8. Running the test

This chapter explains the sequence to follow when you run WSim. It discusses the
following tasks:
v Running and analyzing a sample test
v Preprocessing the script
v Estimating storage requirements
v Running WSim on MVS and TSO
v Controlling and monitoring WSim operation
v Running WSim as a permanent task.

It also describes what features are available for operation. For specific information
about how to use these features, refer to Part 2, “Operation,” on page 87and WSim
Utilities Guide.

Running and analyzing a sample test
Before you run WSim using your complete network definition and all of the
message generation decks, you should run one or more sample tests. These sample
tests enable you to test portions of the script before you run the complete
simulation. You can use the sample tests to find errors in coding or logic before
they become masked or compounded by other errors. Sample tests are especially
helpful if you are simulating a large network or using complex message generation
decks. However, even if you are simulating a small network and using simple
decks, dividing the complete test into a number of samples will help you avoid
large, time-consuming errors.

In general, your first sample test should include a very small network definition
and a simple message generation deck. Subsequent samples could test larger
networks or more complicated decks. For example, if you were using WSim to
simulate 1000 terminals logging on to TSO, you would run several sample tests.
The first test could simulate one terminal and use a simple logon deck. Later tests
could use the same message generation deck but would include more terminals. A
final sample test might use a more complicated logon deck with error checking.

The number and type of sample tests you run depend on how large your
simulated network is and how complicated your message generation scripts are.
As you become more experienced with using WSim for a particular type of
simulation, you may need to run fewer sample tests. Initially, however, you should
plan to conduct a number of sample tests to help you detect and correct errors.

When you run a sample test, you follow the same sequence as you use when you
run the complete simulation. This sequence is explained in the following sections
of this chapter.

Preprocessing the script
Preprocessing involves using the Preprocessor to check the syntax of the network
definition statements and the message generation decks as well as storing them in
the appropriate data sets. Preprocessing is not required; you can store the network
definitions and message generation decks in the appropriate data sets using an

61

editor or using the ITPSYSIN program. However, when you preprocess the script,
you help ensure that the network will be initialized without errors during WSim
operation. Preprocessing does not shorten the amount of time needed to initialize a
network, but it may reduce the overall time needed to run WSim by detecting
errors early.

If you create your message generation decks using STL, you do not need to use the
Preprocessor; the STL translator will check the syntax of your statements and store
them in the appropriate data sets. If you create your message generation decks
using one of the script generating utilities (WSim/IDC or ITPSGEN) you can
preprocess the decks to store them in data sets, but you do not need to check the
syntax of the statements. You may want to use ITPSYSIN to store message
generation decks created by the script generating utilities without checking syntax.
You can preprocess network definitions that correspond to these message
generation decks without preprocessing the decks as long as you have already
defined the decks and stored them.

Using the Preprocessor
The input to the Preprocessor consists of the network definition statements, which
can be stored as a sequential data set or as a member of a partitioned data set, and
one or more message generation decks.

To start the Preprocessor, run the load module ITPENTER with the PREP execution
parameter specified. During preprocessing, most of the control blocks that would
be needed to run the network are built into virtual storage. Therefore, when you
preprocess large network configurations, be sure that the region size is large
enough for the network control blocks. For more information about determining
region size, refer to “Estimating storage requirements” on page 63.

If the Preprocessor detects no errors in the network definition statements or the
message generation decks, the script is stored in the appropriate data sets. You
define these data sets in the WSim/ISPF Interface, JCL or TSO CLIST that runs the
Preprocessor. You can store the preprocessed network definition statements and
message generation decks in the same data set or in separate data sets.

The Preprocessor also provides printed output. This information consists of the
following:
v Listing of the input network definition statements (optional)
v Listing of the input errors (if any)
v Network summary report (optional)
v Estimate of storage requirements

This estimate specifies the number of bytes required for the network control
blocks; it does not indicate the region size needed to run WSim for a particular
network configuration.

v Notice of whether the network data set was saved in the output data set.

For specific information about using the Preprocessor, refer to WSim Utilities Guide,
which shows example Preprocessor output with and without errors. It also
includes instructions for running the Preprocessor using the WSim/ISPF Interface,
sample JCL or a TSO CLIST for running the Preprocessor.

62 WSim Workload Simulator: User's Guide

Using ITPSYSIN
You can use a subset of the Preprocessor functions by running the ITPSYSIN utility
program. This utility reads the SYSIN data stream and stores the network
definition statements and message generation decks in the appropriate data sets.
ITPSYSIN does not check the syntax of the statements.

ITPSYSIN runs much faster than the Preprocessor. You can use ITPSYSIN and then
initialize the network using the I (Initialize) operator command with the list option.
This will produce a listing of the network definition statements and the message
generation decks. By doing this, WSim checks the syntax of the statements only
once (when they are initialized) and not twice.

You can use ITPSYSIN any time you do not need the syntax-checking facilities of
the Preprocessor. For example, you could use ITPSYSIN for a personalized library
system, previously processed networks, and automatically generated networks.

Note: When you use ITPSYSIN, remember that the syntax of the statements is
checked when they are initialized. You must correct all errors before WSim can
run.

Estimating storage requirements
After you preprocessed the script, you can estimate the amount of storage required
for the simulation. Calculating the storage needed for large configurations is a
complex process because of variations among systems and network requirements.
The information presented here is designed to help you estimate the storage
required for your particular configuration. These sections discuss estimating host
processor virtual storage.

Host processor virtual storage estimates
The approximate storage requirement, in bytes, for the execution of a simulation is:

Storage Estimate = 1,500,000 + N

where N is the storage required for network definition control blocks.

For an average size network, WSim requires 1,500,000 bytes of virtual storage for
the WSim host processor load modules, work areas, and internal buffers. If you
plan to simulate a larger network, you need to determine the storage required for
network definition control blocks.

Network storage size N
You can determine the approximate storage required for network definition control
blocks using two methods:
1. Run the Preprocessor, using your network configuration as input. Message

ITP657I gives you the storage size required for your network definition. You
can then use this value as N.
This is the recommended method for determining network control block
storage requirements. Running the Preprocessor takes less virtual storage than
does running the simulation itself because message generation decks and
various subtasks are not kept in virtual storage.
For more information about using the Preprocessor, refer to “Preprocessing the
script” on page 61 and to WSim Utilities Guide.

Chapter 8. Running the test 63

2. Consult the example network definition shown in Figure 9.This network
contains all of the different types of simulation groups in WSim. It is written in
a representative format so that you can estimate how much storage similar
groups in your network take.
You can use this method before you write network definition statements, for
example, while you are planning the network. This example only shows
samples of the different groups. Your network definitions may or may not
require similar storage sizes. In addition, not all definition statements are
included in this sample.

Sample network for estimating storage
The network definition shown in Figure 9 is a sample that contains all groups that
WSim can simulate. This network definition can give you an estimate of how
much storage may be required to hold the network definition control blocks.

The values used here are components of the variable N. You must add the value N
to the other storage estimates to estimate how much virtual storage is required to
run the network simulation.

The list below shows the groups that are defined in the sample network and lists
their control block storage requirements.

Sample Group Type Storage Size in Bytes1

(1) NTWRK/PATH 10,000

(2) APPCLU/TP (CPI-C) 6,100

(3) VTAMAPPL/LU 28,400

(4) TCPIP/DEV (Telnet 3270) 15,800

(5) TCPIP/DEV (FTP) 6,100

(6) TCPIP/DEV (Simple TCP) 6,300

Total N 72,700

1. These are rounded numbers that represent only the sample network and not all possible configurations.

64 WSim Workload Simulator: User's Guide

(1)
STORAGE NTWRK MLOG=YES,INIT=SEC,ITIME=1,CONRATE=YES, NTWRK/PATH

UTI=100,MAXSUBA=63,OPTIONS=(CDLOG), Group
BUFSIZE=2048,THKTIME=UNLOCK,RESOURCE=ITPECHO

* Size=10,000
0 PATH WAITDECK
--

(2)
*
**** ONE VTAM APPC APPLICATION SIMULATING TWO CPI-C TRANSACTION PROGRAMS
* APPCLU/TP
* Group
APPCLU1 APPCLU
LU1TPA TP
LU1TPB TP Size=6,100
--

(3)
*
**** FOUR VTAM APPLICATIONS EACH SIMULATING ONE LU2 HALF-SESSION
* VTAMAPPL/LU
* Group
WSIMAPL1 VTAMAPPL
WSIM1 LU LUTYPE=LU2
WSIMAPL2 VTAMAPPL
WSIM2 LU LUTYPE=LU2 Size=28,400
WSIMAPL3 VTAMAPPL
WSIM3 LU LUTYPE=LU2
WSIMAPL4 VTAMAPPL
WSIM4 LU LUTYPE=LU2
--

(4)
**** ONE TCP/IP CONNECTION SIMULATING FOUR TELNET 3270 SESSIONS
* TCPIP/DEV
* Group
TCPTN TCPIP TCPNAME=TCPIP,SERVADDR=9.67.6.1
TNDEV1 DEV
TNDEV2 DEV Size=15,800
TNDEV3 DEV
TNDEV4 DEV
--

(5)
**** ONE TCP/IP CONNECTION SIMULATING FOUR FTP SESSIONS
* TCPIP/DEV
* Group
TCPFTP TCPIP TCPNAME=TCPIP,SERVADDR=9.67.6.2,TYPE=FTP
FTPDEV1 DEV
FTPDEV2 DEV Size=6,100
FTPDEV3 DEV
FTPDEV4 DEV
--

(6)
**** ONE TCP/IP CONNECTION SIMULATING FOUR SIMPLE TCP SESSIONS
* TCPIP/DEV
* Group
TCPSTCP TCPIP TCPNAME=TCPIP,SERVADDR=9.67.6.3,TYPE=STCP
STCPDEV1 DEV
STCPDEV2 DEV Size=6,300
STCPDEV3 DEV
STCPDEV4 DEV
--

Figure 9. Sample network for estimating storage

Chapter 8. Running the test 65

Adding terminals
The greatest difference between your network definitions and the example will
probably be the number of terminals (DEV, LU, TP) that you define. Some terminal
types require more storage than others. In general, 3270 terminals require the
greatest amount of storage, followed by LU7s.

When you add 3270 terminals to your network definition, allow at least 3880 bytes
of storage for each 3270 DEV or LU2 half-session. The 3270 terminals with
additional features and larger display sizes require more storage to simulate.

Running WSim
You can run WSim on MVS in batch mode, as a procedure, using the WSim/ISPF
Interface, or under TSO.

The following sections briefly describe what you need to consider before you run
WSim in each of these environments. For specific information about operating
WSim, refer to Part 2, “Operation,” on page 87.

Using MVS
On MVS, you start WSim as a batch job or as a normal procedure. Refer to Part 2,
“Operation,” on page 87 for an example of the JCL to run WSim on MVS in each
of these configurations.

Using TSO
You can operate WSim under TSO by starting ITPENTER from a TSO terminal.
Operating WSim under TSO can be useful when you do not have access to the
system console or when you want WSim operation to be transparent to systems
operation personnel. For example, you can operate WSim under TSO when you are
conducting a function test on a new application. Note that you probably would not
want to operate WSim under TSO when you are conducting a stress or
performance test since WSim requires more system resources under TSO.

There are two special installation requirements for operating WSim under TSO:
program authorization and the use of the SSP Loader/Dumper utility. Refer to
“Authorizing WSim under TSO” on page 10 and the WSim Program Directory for
information about these special requirements.

If WSim is going to write its message log data set to a tape data set, you must
specify the MOUNT logon attribute for the TSO user ID under which WSim is
operating.

Part 2, “Operation,” on page 87 provides more information about operating WSim
under TSO. It also includes an example of how you can use a TSO CLIST to
allocate WSim data sets and devices, call the WSim load module for execution, and
free the data sets and devices.

Controlling and monitoring WSim operation
The following sections discuss some of the planning considerations for controlling
and monitoring WSim operation. They discuss using operator commands,
controlling WSim from a console, controlling WSim automatically, and using the
Display Monitor Facility. For specific information about how to control and
monitor WSim operation, refer to Part 2, “Operation,” on page 87.

66 WSim Workload Simulator: User's Guide

Using operator commands
You can use WSim operator commands to control various aspects of a simulation.
For example, you can use operator commands for the following types of tasks:
v Initializing the network
v Starting, stopping, and canceling network resources
v Displaying the current status of a network resource
v Altering the values of network parameters
v Restarting message logging
v Obtaining online response-time statistics for a specified resource
v Entering console recovery mode
v Stopping WSim.

To use operator commands effectively, you need to understand how they affect the
resources simulated by WSim.

From the user's standpoint, WSim consists of networks with variable numbers of:
v VTAM applications (VTAMAPPL)
v CPI-C transaction programs (APPCLU)
v TCP/IP resources (TCPIP)

Each resource is represented by a control block. WSim operator commands operate
on these control blocks.

You determine which resource is affected by the operator command by specifying
a unique resource name on the command. If the name of the resource is not unique
(for example, you assigned the same name to terminals on different lines), you
must qualify it by preceding it with the name or names of the next higher-level
resource or resources. Note that if you assign unique names to the resources in
your network, you do not need to qualify the names on the operator command.

You can operate and control networks independently of each other so that you can
cancel one network without affecting any other networks. You can also change all
networks with one command.

Controlling WSim from a console
WSim uses the MVS MODIFY command interface to receive WSim operator
commands you enter at the operator console. This interface eliminates the need for
write-to-operator-with-reply (WTOR) processing by the main WSim simulation
task. For more information about using this interface, refer to Part 2, “Operation,”
on page 87.

Although you can use the WTOR interface, the system MODIFY command
interface is the preferred method of entering commands manually. WSim uses the
WTOR interface if WSim is started as a batch job. In this case, a time-stamped
outstanding WTOR message is issued to enable you to enter console commands.
You must preface each command with the number of the currently outstanding
WTOR.

Controlling WSim automatically
WSim provides several ways for you to control operation automatically, both at the
terminal and at the network level. You can do the following to automate WSim
operation:

Chapter 8. Running the test 67

v Use the OPCMND statement to issue operator commands from the message
generation deck for a simulated device. You can issue all operator commands
using the OPCMND statement, except for console recovery subcommands,
which the system console operator must enter. For more information about using
operator commands on the OPCMND statement, refer to Creating WSim Scripts
and WSim Script Guide and Reference.

v Use the NTWRK and NTWRKL execution parameters to specify a network to be
automatically initialized and started without operator intervention when WSim
operation begins. For more information, refer to Part 2, “Operation,” on page 87.

v Code the EMTRATE operand on the NTWRK statement or use the E operand on
the A (Alter) operator command to specify an expected message transfer rate for
messages transmitted from WSim for the entire network. WSim automatically
adjusts the user time interval (UTI) at intervals of specified duration to maintain
that rate.
Once the rate is established, WSim compensates for lines dropping out because
of hardware or software problems by lowering the UTI and increasing the rate
of traffic from other simulated terminals. For more information, refer to Creating
WSim Scripts andPart 2, “Operation,” on page 87.

v Code the SCAN operand on the NTWRK statement and use the Q (Query) or A
(Alter) operator commands to determine the current status of a simulated
terminal or device. You can request that WSim automatically attempt to
reactivate the terminal or device if necessary. For more information, refer to
Creating WSim Scripts and Part 2, “Operation,” on page 87.

v Code the STIME (Start Time) operand on the NTWRK statement to stagger the
startup delay for each VTAMAPPL, APPCLU, or TCPIP in the network.
Additionally, you can code the FE (Future Event) network definition statement
to specify an operator command that is automatically executed when a timer
expires or when a specified event occurs. STIME and FE give you control of the
entire network, not simply an individual terminal or device. For more
information, refer to Creating WSim Scripts.

v Use command processors and user exit routines to automate WSim operation.

Using the Display Monitor Facility
The Display Monitor Facility is a VTAM application program within WSim that
can display simulated 3270 display images or display transmitted and received
data flows for any simulated device on a VTAM-accesible 3270 monitor. You can
use the Display Monitor Facility in the following three ways:
v To develop and debug scripts for display devices
v To monitor a test dynamically during operation
v To show interactions with host applications for user education and product

demonstrations.

You can use the Display Monitor Facility with Version 2 Release 1 and later
releases of VTAM. The facility runs under MVS. You activate the Display Monitor
Facility when you start WSim with the DMAPPL execution parameter specified.

You can use the Display Monitor Function at any time during a simulation. The
Display Monitor Facility shows changes to the screen image during the simulation.

Debugging scripts
The Display Monitor Facility helps speed up WSim script development by enabling
you to watch the message traffic being sent and received by a simulated terminal.

68 WSim Workload Simulator: User's Guide

This is very useful when you are trying to get a new script to work since you can
detect errors as they happen. The Display Monitor Facility helps you detect the
following types of errors:
v Invalid cursor position
v Incorrect panel format
v Devices that are no longer generating messages.

Monitoring WSim
When your scripts are in working order, you can use the Display Monitor Facility
to show the current activity of any resource in your simulated network. Without
this facility, you would have to use one of the following procedures:
v Issue Q (Query) operator commands to see what was last transmitted or

received and how far into the message generation deck the simulation has
progressed

v Insert write-to-operator (WTO) statements into your message generation decks
or use the STL SAY statement to inform the operator about the progress of the
run.

By monitoring the displays during the run with the Display Monitor Facility, the
operator console is not cluttered with messages or query responses.

Demonstrating products
You can use the Display Monitor Facility to demonstrate new products and to help
educate users. For example, if you want to demonstrate a new application that
uses 3270 terminals, you can code message generation decks to log on and use the
application. Then you can use the Display Monitor Facility during a test to show
what a real user would see.

For more information about using the Display Monitor Facility, refer to Part 2,
“Operation,” on page 87.

Running WSim as a permanent task
Depending on the method and goals of using WSim in your organization, you may
want to run one WSim job as a permanent task. WSim can support multiple
network simulations from multiple consoles or can be reused by one person after
another. For example, you can run small tests on your production system during
normal working hours. You do not need to dedicate a system to the test. Although
this method of running WSim would not work for major performance or stress
tests, running WSim as a permanent task could ease bottlenecks and scheduling
problems for people developing scripts or testing applications.

Understanding the benefits and concerns
Running WSim as a permanent task can alleviate many organizational and
scheduling problems. It can promote the use of WSim for various types of testing.
In addition, running WSim as a permanent task can improve the overall quality of
testing for the following reason:
v More users will have better access to WSim
v The preparation time for each test will be shorter because all resources are

predefined for everyone.

Multiple users can work on WSim concurrently because of the following features:
v Multiple consoles can accept operator commands.

Chapter 8. Running the test 69

v WTO messages are routed to the console that initialized the network.
v You can use the MODIFY command interface in place of WTOR command input.
v Each network can use a unique log data set.
v The Preprocessor can update definitions while the simulation is running.

However, the current simulation will not realize that the network definitions are
updated until the network is initialized again.

v The WSim job can use network input definitions from concatenated data sets.
v You can use the O (Output Data) operator command dynamically to close the

SYSPRINT output file during the run.
v You can run postprocessor utilities offline with the network log data set

previously created.

WSim consumes relatively little host processor time when you are not actively
using it. When you want to use WSim, you initialize and start the network.
Similarly, another user can initialize and start another network from another
console, and so on. When more than one person is using WSim at the same time,
you should not enter a ZEND or global C (Cancel) operator command unless all
users agree that WSim can be canceled. Instead, you can specify the name of a
network on the C operator command and selectively cancel one or more networks
without stopping WSim.

Using the online response-time monitor
Another feature available when you run WSim as a permanent task is a local
response-time monitor. One simulated terminal could be running constantly to
gather response time statistics from any system in the network. You could then use
the RSTATS feature, user-written exit routines, or both to calculate and display
response time statistics online. Refer to Chapter 9, “Using WSim output,” on page
71 and to Part 2, “Operation,” on page 87 for more information about using the
RSTATS feature. For more information about writing user exit routines, refer to
WSim User Exits.

You can use the following steps to develop a network that will monitor response
times:
1. Define a network containing one VTAMAPPL and one LU statement.
2. Transmit one sample request to the system every few minutes (or at selected

time intervals) and measure the time until a response is received. You can
perform calculations with RSTATS or with a user exit routine.

3. Maintain running totals and averages internally within WSim by using
counters, save areas, and so on.

4. Use the W (RSTATS Query) operator command or a user exit routine to display
the response times on a real display terminal.

A response-time monitor can be as simple or complex as you want. By combining
scripts, internal logic, and user exit routines, you can locate these custom-made
monitors throughout your network with a minimum of overhead.

A sample monitor network, which performs functions other than online
response-time measurement, is presented in Creating WSim Scripts.

70 WSim Workload Simulator: User's Guide

Chapter 9. Using WSim output

This chapter discusses the planning considerations for generating and using the
output from tests. It includes sections on using operator reports, logging messages,
formatting the log data set, comparing 3270 display records, and determining
response times.

WSim provides a variety of online and printed reports to help you analyze the
results of a test. Some of these reports are printed automatically, or you can request
them by issuing specific operator commands or running one of the WSim utilities
(such as the Loglist Utility or the Log Compare Utility). WSim can provide the
following types of output:
v Operator reports that indicate what is happening during operation
v The message log data set that contains complete records of the test run
v Reports generated by the following three utilities to aid you in analyzing the log

data set:
– The Loglist Utility lists the log data set in a formatted report.
– The Log Compare Utility compares the 3270 display records from two log

data sets and reports when a difference is detected.
– The Response Time Utility provides detailed statistical analysis of the

response times.
v Online response-time statistics.

Although WSim output can help you determine the effectiveness of your network
or application (for example, by telling you about the response times for a
simulated resource), most of the reports are intended to help you understand how
WSim is interacting with the system under test.

Remember that WSim is external to the system under test; it acts like an operator
typing at a terminal. For this reason, WSim cannot provide information about the
internal workings of your system. To obtain this type of information, you should
use other monitoring programs during the test. These monitoring programs are the
same ones you would use if you were testing your system using real operators.

Using operator reports
You can use the operator reports to determine what is happening during the test
run. This section briefly describes the operator reports you can get during a test.
These reports include the following:
v Interval Report
v End of Run Report
v Inactivity Reports.

For general information about the information contained in each these reports,
refer to the following sections. For more specific information about these reports,
refer to Part 2, “Operation,” on page 87

Using interval reports
You can use interval reports to monitor what is happening within the simulated
network. The Interval Report provides information about the current activity and

71

status of each simulated resource in the network. WSim prints the report on the
operator console at the time interval you specify with the ITIME parameter on the
NTWRK statement. The statistics are accumulated until you cancel the network
with the C operator command or reset it with the R operator command.

Interval reports include the following types of information:
v Time of day and date
v Network name
v Network header
v Value of the network user time interval (UTI)
v Address of port and name of resource
v Current status of resource
v Number of items sent or received by each resource. Depending on the resource,

these items can include complete transactions and SNA responses
v Totals of all statistics for each resource for the last reporting interval
v Cumulative totals of all statistics for each resource for all reporting intervals
v Rates per minute of each statistic for the last reporting interval.

You can specify condensed forms of these reports by using the REPORT operand
on the NTWRK statement or the X operand on the A (Alter) operator command.
For more information about using the REPORT operand, refer to the WSim Script
Guide and Reference and to Creating WSim Scripts.

Using end of run reports
You can use end of run reports to obtain general information about what happened
during the test run. The End of Run Report provides summary data from the
simulated network. End of run reports are interval reports that provide you with
summary data for the simulated network. They print automatically at the end of
each run when you cancel the network or stop WSim. End of run reports have the
same format as interval reports.

Using inactivity reports
The Inactivity Report contains information on the status of devices in the network.
You can use this report to find problems in your network. For example, the
Inactivity Report can tell you whether a particular terminal is active or inactive.

To obtain this report, code the SCAN operand on the NTWRK statement or use the
S operand on the A (Alter) operator command. These operands must specify a time
interval between reports that is greater than zero.

The Inactivity Report contains the following information for each inactive resource
in the network:
v Last message transmitted
v Last message received
v Time of the last message transmitted
v Time of the last message received
v Name of the message generation deck, if any
v Response field coded on the TEXT statement, if any
v Indication of whether the device was last transmitting or receiving.

72 WSim Workload Simulator: User's Guide

The Inactivity Report is time stamped so that you can determine how long a
terminal has been inactive. For a list of the criteria the scan function uses to
determine if a terminal is active or inactive, refer to Creating WSim Scripts.

Logging messages
When processed by the Loglist Utility, the log data set is probably the single most
valuable tool that you can use to debug your network definition statements and
message generation decks. The log data set contains all data that has been
transmitted or received by the WSim-simulated resources in a specified network.
You define the name of the message log data set in the LOGDD DD statement
when you run WSim.

By default, the message logging facility is active for the entire network; however,
you can deactivate message logging for the entire network or for a line in the
network by specifying MLOG=NO on the NTWRK or LINE statement. You can
also code the NTWRKLOG statement when you define a network to specify that a
separate log data set be used for that network. This enables you to run multiple
networks and analyze the results from each network independently at a later time.

In general, you do not need to know how logs and time stamps messages to use
the log data set. However, you may find this information helpful as you debug
your scripts or analyze response times. For complete information about message
logging, refer to Part 2, “Operation,” on page 87 and WSim Utilities Guide. For
information about formatting the log data set with the Loglist Utility, refer to the
following section, Formatting the Log Data Set.

Formatting the log data set
The Loglist Utility formats and prints the records in the log data set. You can
specify the types of records you want to see, and you can limit the resources for
which records are printed. This enables you to gain the information that is the
most useful to you about the behavior of your network.

In addition, you can write user exit routines to read the log data set and print
information about the simulation run. For more information about writing user exit
routines, refer to WSim User Exits.

Running the Loglist Utility
There are two types of input to the Loglist Utility: the log data set and the Loglist
Utility control commands. The log data set is created automatically when you run
WSim, unless you specify MLOG=NO on the NTWRK statement or on all
lower-level resources. You can create a file containing control commands that
control the operation of the Loglist Utility and format the output produced by the
utility. As an alternative, you can specify the CONSOLE execution parameter and
enter the control commands directly at the operator console.

You use the WSim/ISPF Interface, JCL or a TSO CLIST to start the utility, to name
the input files, and to specify where the formatted log will be printed. For more
information about using control commands and running the Loglist Utility, refer to
WSim Utilities Guide.

Using the output from the Loglist Utility
The Loglist Utility formats each type of log record differently. You can use the
formatted records produced by the Loglist Utility to debug your scripts and to

Chapter 9. Using WSim output 73

learn about your network. For example, you can determine whether new
application program functions ran correctly. You can also obtain an estimate of
your system's performance by using the time stamps in each record to compute the
response times between the messages transmitted and received by the simulated
terminals.

One feature of the Loglist Utility that is especially helpful is the printing of screen
image records. These images are updated each time a message is sent or received
by the device, and you can tell WSim to log the image each time it is updated by
specifying the LOGDSPY operand in the networks.

When the test run is over, you can use the Loglist Utility to format and print these
screen images. The output from the Loglist Utility looks the same as the screen
images you would see at the real device. You will find it helpful to use this output
when you are trying to get a new message generation deck to work because screen
image records are easier to understand than the raw 3270 data stream. For specific
information about these formatted records, refer to WSim Utilities Guide.

Comparing 3270 display records
The Log Compare Utility compares 3270 display records from two log data sets
and reports when a difference is detected. You can select the records to be
compared and the fields to be compared for each record. You can also request a set
of reports that identify the differences found between the display records.

Running the Log Compare Utility
There are two types of input to the Log Compare Utility: log data sets from two
test runs and the Log Compare Utility control commands. The log data sets are
created automatically when you run WSim, unless you specify MLOG=NO and
LOGDSPY=NONE on the NTWRK statement. You can create a file that contains
the control commands. These commands specify which records from the log data
sets to compare and when and how to synchronize the log data sets. As an
alternative, you can specify the CONSOLE execution parameter and enter the
control commands directly at the operator console.

You use the WSim/ISPF Interface, JCL or a TSO CLIST to start the utility, to name
the input files, and to specify where the reports will be printed. For more
information about running the Log Compare Utility, refer to WSim Utilities Guide.

The control commands for the Log Compare Utility are grouped into two
categories:

Selection commands
Define the records to be compared.

Process commands
Define the fields to be compared on each record. In addition, these
commands specify which reports should be generated.

These commands are optional. However, if you enter no control commands except
for RUN and END, the Log Compare Utility compares every log display record for
every device or logical unit in the log data set. For more information about using
control commands for the Log Compare Utility, refer to WSim Utilities Guide.

74 WSim Workload Simulator: User's Guide

Synchronizing the log data sets
You should use the synchronization facility provided with the Log Compare Utility
to synchronize the two data sets. The synchronization facility helps ensure that
WSim is comparing equivalent display records from each of the two data sets.
Otherwise, minor changes between the two test runs can significantly affect the
results of the Log Compare Utility.

For example, suppose you are using WSim to conduct a regression test on an
application. You conduct an initial test, make a few changes to the application
(such as adding a password security panel), and repeat the test. You use the Log
Compare Utility to find out how the 3270 display records differ between the two
test runs and, surprisingly, find significant differences between the log data sets.
This is because you added a new panel, so the two log data sets were not
synchronized. As a result, the Log Compare Utility attempted to compare two
entirely different display records.

Differences between two log data sets can occur for a number of reasons, including
the following:
v One or more fields on a panel contains a different value. For example, the value

of a particular field may have changed from 45 to 70 between two test runs.
v A new panel is added or deleted. For example, you added a new password

security panel between the two test runs.
v A field is added or deleted from a panel. For example, you added a field for

keeping track of back orders.

Although these may seem to be minor differences, they can significantly affect the
results from the Log Compare Utility. To avoid this problem, you should use the
synchronization facility provided with the Log Compare Utility. This facility
attempts to resynchronize the compare process if a specified number of data
differences occur in succession. To use the facility, you need to identify the
following:
v The records that will be used to resynchronize the compare process. For

example, if you know that a particular panel has not changed between the two
test runs, you can request that the Log Compare Utility use the display record
from this panel to resynchronize the comparison, if necessary.

v The number of differences that can occur before the Log Compare Utility ends
or resynchronizes the compare process.

For more information about synchronizing two log data sets, refer to WSim Utilities
Guide.

Using the output from the Log Compare Utility
Depending on the operands you specify on the REPORT process command, the
Log Compare Utility can print one or more of the following reports:
v Active Command List (printed automatically after each run)
v Complete Records List
v Compare List
v Differences Report
v Summary Report.

The following sections describe each of these reports. For more information, refer
to WSim Utilities Guide.

Chapter 9. Using WSim output 75

Active Command List: The Log Compare Utility prints an Active Command List
automatically after each run. This report lists the commands you issued and the
operand values that were in effect during the run. You can use this report to
determine which selection and process commands you used for a particular
comparison. For example, if you ran the Log Compare Utility several times, you
might use the Active Command List to determine which commands produced
which output.

Complete Records List: The Log Compare Utility prints Complete Records Lists for
each device being compared. The report lists each display record that was
compared as well as those records that were excluded. There are separate lists for
each log data set. You request the Complete Records List by specifying the
RECORDS operand on the REPORT process command. You can use the Complete
Records List to verify that the Log Compare Utility attempted to compare the
display records you specified.

Compare List: The Log Compare Utility prints one Compare List for each device
being compared. The report lists the following items:
v Each pair of display records (one from each log data set) that was compared
v Any process commands used to process the records
v The results of the comparison. If a difference was detected, the Compare List

includes a reason for the difference.

You request the Compare List by specifying the COMPARES operand on the
REPORT process command. You can use this report to determine quickly whether
the comparison occurred correctly; a quick scan of this report indicates whether
synchronization was attempted and so on.

Differences Report: If differences were detected, the Log Compare Utility prints one
Differences Report for each device being compared. The information contained in
the report depends on whether the difference was a data difference or an attribute
difference. For example, if the Log Compare Utility detects a data difference, it
prints a copy of the formatted screen image for both data sets. If the Log Compare
Utility detects an attribute difference, it prints a detailed attribute report. You
request the Differences Report by specifying the DIFFERENCES operand on the
REPORT process command. This report is printed by default if you do not specify
the REPORT command. You can use this report when two screens do not match
and you are not sure why.

Summary Report: The Log Compare Utility prints one Summary Report following
each run. This report summarizes the overall results of the run. It includes the
following information for each device:
v Number of records selected
v Number of records excluded
v Number of differences detected
v Whether synchronization was attempted
v Whether the run was ended early.

You request the Summary Report by specifying the SUMMARY operand when you
specify the REPORT process command. This report is printed by default if you do
not specify the REPORT command. You can use this report as a quick reference
after the comparison is completed.

76 WSim Workload Simulator: User's Guide

Determining response times
WSim provides the following two facilities for monitoring response times:

Response Time Utility
A postprocessor that uses data from the log data set.

RSTATS
An online response statistics reporting facility. RSTATS is unrelated to the
Response Time Utility and enables you to monitor the response times of
simulated devices while WSim is running.

For more information about using the Response Time Utility, refer to Using the
Response Time Utility and WSim Utilities Guide. For more information about using
RSTATS, refer to “Using the response-time statistics feature” on page 79 and Part 2,
“Operation,” on page 87.

Using the Response Time Utility
The Response Time Utility analyzes the log data set and measures the time it takes
to enter a command at a simulated terminal and receive a response from the
system under test. To do this, the utility uses the time stamps from a pair of
transmit and receive records and calculates response times for each terminal. The
Response Time Utility uses a set of default rules for determining the transmit and
receive record pairings. However, you can change these rules by specifying a
logical transaction for the utility to use when it selects the transmit and receive
records. This logical transaction can include any number of data exchanges
between the simulated resource and the system under test.

Note: Because the Response Time Utility determines the transmit-receive pairs for
a particular terminal, be sure to use unique names for the terminals in your
network definition if you plan to use this utility.

Running the Response Time Utility
There are two types of input to the Response Time Utility: the log data set and the
Response Time Utility control commands. The log data set is created automatically
when you run WSim, unless you specify MLOG=NO on the NTWRK statement.
You can create the file that contains the control commands. These commands
specify what time limits to use, which lines and terminals to evaluate, how to
compute response times, and how to generate output reports. As an alternative,
you can specify the CONSOLE execution parameter and enter the control
commands directly at the operator console.

You use the WSim/ISPF Interface, JCL or a TSO CLIST to start the utility, to name
the input files, and to specify where the reports will be printed. For more
information about running the Response Time Utility, refer to WSim Utilities Guide.

Defining transactions
You can define logical transactions to the Response Time Utility by specifying the
messages that mark the beginning and end of the transaction. These transactions
can include any number of messages. For more information about transactions,
refer to “Deciding which transactions to test” on page 46.

For more information about defining transactions to the Response Time Utility,
refer to WSim Utilities Guide.

Chapter 9. Using WSim output 77

Using output from the Response Time Utility
The Response Time Utility reads the records on the log data set and calculates
response times based on the data. Depending on the commands you specify, the
Response Time Utility can print the following reports:
v Response Time Reports
v Transaction Record Listing
v Response Listing File
v Response Time Frequency Distribution
v Cumulative Response Time Distribution
v Time Graph of Responses.

This section briefly describes each of these reports. For more information, refer to
WSim Utilities Guide.

Response Time Reports: Response Time Reports include comprehensive summary
and statistical information about the response times for terminals or user-defined
transactions. You request these reports by specifying the REPORT control
command and the REPORT operand on the TERM, VTAMAPPL, or APPCLU
control commands.

Transaction Record Listing: The Transaction Record Listing lists the log records
that were selected for transaction processing by the other input commands. No
records are listed unless you defined at least one transaction. You can use this
report to verify that the response-time calculations were made using the records
you expected to be used.

You request this listing by specifying the TPRINT control command.

Response Listing File: The Response Time Utility can create a sequential data set
that consists of one record for each response time computed during the run. Each
record consists of information that identifies the terminal or transaction for which
the response was computed and the response time. To obtain the Response Listing
File, you must do the following when you run the Response Time Utility:
v Name the file LISTDD in the JCL statement.
v Specify the LIST or LISTX execution parameter.

If you specify LISTX, the Response Time Utility produces additional information
that can be processed by the Service Level Reporter (SLR) licensed program using
user-defined SLR Adaptable Log Layout (ALL) log tables and user programs. SLR
can create color graphs and charts from the response time data. For more
information about the format of the extended records produced when you specify
the LISTX execution parameter, refer to WSim Utilities Guide.

Response Time Frequency Distribution: The Response Time Frequency Distribution
is a histogram that shows for each calculated response time, what percentage of
responses fall into that response time. You request the distribution by using the
REPORT control command and the REPORT operand on the VTAMAPPL,
APPCLU, or TERM commands.

Cumulative Response Time Distribution: The Cumulative Response Time
Distribution is a graph that shows the cumulative distribution of response times
for the time period defined for the run. You request the distribution by using the
REPORT control command and the REPORT operand on the VTAMAPPL,
APPCLU, or TERM commands.

78 WSim Workload Simulator: User's Guide

Time Graph of Responses: A Time Graph of Responses shows how the response
times for a terminal or group of terminals vary over time. Each increment on the
horizontal axis represents a time interval that you specify. The graph plots the
minimum, average, and maximum response time computed during that interval.
You request a time graph by using the REPORT control command and the
REPORT operand on the VTAMAPPL, APPCLU, or TERM commands.

Using the response-time statistics feature
You can use the Response-Time Statistics feature, RSTATS, to provide online
response time calculations for terminals simulated by WSim. RSTATS measures the
time it takes to enter a command at the terminal and receive a response from the
system under test.

RSTATS collects online response-time statistics only for those simulated resources
that generate messages. These include terminals and logical units. WSim supports
the RSTATS feature for all terminal types.

Deciding whether to use RSTATS or the Response Time Utility
In most cases, the results from RSTATS should closely resemble the results from
the Response Time Utility because RSTATS processes the same LOG control block
immediately after it is written to the log data set. However, RSTATS calculates
response times during operation, which prohibits some of the more complex
processing available when you use the Response Time Utility. Like the Response
Time Utility, RSTATS processes every transmit and receives record. However, when
you use RSTATS, you cannot define logical transactions. In addition, certain
messages are screened and discarded for SNA, 3270, and LU7 devices.

In general, you use the RSTATS feature when you want to monitor response times
during operation to ensure that messages are being transmitted and received at
reasonable rates. You use the Response Time Utility when you need more detailed
statistics about response times after a test run.

Activating the RSTATS feature
To activate the RSTATS feature for a particular terminal, device, or logical unit, you
must do the following:
1. Code RSTATS=YES on the appropriate DEV or LU statement or statements

when you define the network.
2. Specify the name of the terminal, device, or logical unit on the W (RSTATS

Query) operator command to generate the statistics.

You can reset the RSTATS feature for a particular resource by using the A (Alter)
operator command or for the entire network by using the R (Reset) operator
command. For more information about using these operator commands, refer to
Part 2. Part 2, “Operation,” on page 87. For more information about coding the
RSTATS operand, refer to the WSim Script Guide and Reference.

Using the output from RSTATS
RSTATS provides the following information for each device or logical unit:
v Average response time
v Most recent value of response time
v Lowest value of response time
v Highest value of response time
v Total number of responses or completed transactions.

Chapter 9. Using WSim output 79

You can use this information to help ensure that your simulation is proceeding
correctly. For more information about using RSTATS, refer to Part 2. Part 2,
“Operation,” on page 87.

80 WSim Workload Simulator: User's Guide

Chapter 10. Sample files

The WSim installation tape contains a sample data set. This data set contains the
following members that may be useful when installing WSim or writing exit
routines.

MVS sample data set

ACHKNETV Message generation deck used by AVMON LU to monitor NetView.

ACHKTSO Message generation deck used by AVMON LU to monitor TSO.

ACTRLNET Message generation deck used by AVMON network controller LU.

AFORTIME AVMON message generation deck that reformats the time of day.

ALOGNETV Message generation deck used by AVMON LU to log on NetView.

ALOGTSO Message generation deck used by AVMON LU to log on TSO.

AMONNETV Message generation deck used by the NetView subsystem controller
LUs in AVMON network.

AMONTSO Message generation deck used by the TSO subsystem controller LUs in
AVMON network.

AVMON Network definition statements for the AVMON network.

COMPJOB Sample Log Compare Utility JCL.

CPICCON CPI-C constants STL include file.

CPICVAR CPI-C variables STL include file.

ECHO Sample PLU echo network.

ECHOJOB Sample ITPECHO JCL. MFS file used to define the Balance Inquiry
Screen in the WSim/ATP example.

INSTALL1 Sample installation test network 1.

ITMNUSER New user setup JCL for WSim Test Manager.

ITPACCEP Job stream to ACCEPT the WSim product using SMP/E.

ITPALLOC Job stream to allocate the WSim and distribution libraries for SMP/E
installation.

ITPAPPLY Job stream to APPLY the WSim product using SMP/E.

ITPDDDEF Job stream to create DD definitions (DDDEFs) for SMP/E installation.

ITPDFCSI Job stream to allocate SMP/E data set and initialize the global zone.

ITPDFZON Job stream to define new SMP/E target and distribution zones.

ITPRECEV Job stream to RECEIVE the WSim product using SMP/E.

ITPRATEG FORTRAN source for the rate table generator.

LLJOB1 Sample Loglist Utility JCL.

LLJOB2 Sample Loglist Utility JCL.

LU2RFJOB Sample NPM/LU2 Reformatter Utility JCL.

PREPJOB Sample Preprocessor JCL.

RESPJOB1 Sample Response Time Utility JCL.

RESPJOB2 Sample Response Time Utility JCL.

81

SGENJOB Sample Script Generator Utility JCL.

SRATETBL Sample Rate Tables.

STCPUDP Sample Simple TCP and UDP Client network.

STCPUDPS Sample STL program for Simple TCP and UDP clients.

STLAVMON Sample STL program with AVMON procedure.

STLECHO Sample STL program which may be used with ECHO network.

STLINST Sample STL program which may be used with the INSTALL1 network.

STLJOB Sample STL Translator JCL.

SYSINJOB Sample ITPSYSIN JCL.

TAPING Sample CPI-C network defining a WSim client.

TAPINGD Sample CPI-C network defining a WSim server.

VTBRFJOB Sample ITPVTBRF JCL.

WEBLOAD Sample network to simulate WEB clients.

WSIMNET1 Sample WSim network.

WSIMPRC5 Sample execution JCL.

WSIMPRC6 Sample execution JCL.

CLIST data sets

ECHORUN Sample ITPECHO CLIST.
IDC Sample Interactive Data Capture Utility CLIST.

IDCTSO
Sample Interactive Data Capture Utility CLIST, run under TSO using
the TSO console option.

LOGCOMP Sample Log Compare Utility CLIST.
LOGLIST Sample Loglist Utility CLIST.
LU2RF Sample SNA 3270 Reformatter Utility CLIST.
PREP Sample Preprocessor CLIST.
RESPTIME Sample Response Time Utility CLIST.
SGEN Sample Script Generator Utility CLIST.
STL Sample STL Translator CLIST.
SYSIN Sample ITPSYSIN CLIST.
WSIMAPPL Sample execution CLIST for VTAMAPPL, CPI-C, or TCP/IP network.
WSIMRUN Sample execution CLIST.
WSIMVTAM Sample execution CLIST for VTAMAPPL network.

82 WSim Workload Simulator: User's Guide

Chapter 11. Using WSim to measure response times

This chapter describes the features that enable WSim to measure system response
times.

One of the most important considerations in a communication network is the
system response time. You often want to monitor response times and to keep them
under certain thresholds set by your local computing center staff. You can use
WSim to measure and report response time statistics. The following sections
discuss ways to do this.

RSTATS feature
WSim can monitor response time statistics and report them online. You can use the
RSTATS (Response Statistics) feature for any simulated terminal including
non-SNA devices. WSim measures terminal response times for every
transmit-receive pair that is processed. You can display these statistics at any time
during the run by using the W (RSTATS Query) operator command. Included in
the data are the average response time, lowest and highest values, and last
response time calculated. Refer to “Using the response-time statistics feature” on
page 79 and Part 2. Part 2, “Operation,” on page 87 for more information about
RSTATS.

Response Time Utility
The Response Time Utility provides response time statistics and graphs for selected
terminals or the entire simulated network after the simulation is finished. It
provides you with a great deal of flexibility in defining the beginning and end of
logical transactions, so that you can measure particular responses or track system
response statistics over time. Refer to “Using the Response Time Utility” on page
77and to WSim Utilities Guide for more information about the Response Time
Utility.

83

84 WSim Workload Simulator: User's Guide

Chapter 12. Summary of logical unit (LU) types

This chapter describes the logical unit (LU) types that WSim currently supports. It
also gives an example of the hardware or software products that typically use each
type of logical unit. For more information about these LU types, refer to Systems
Network Architecture: Reference Summary.

LU Type 0
LU Type 0 uses SNA-defined protocols for transmission control and data
flow control but uses user-defined or implementation-defined protocols to
supplement or replace higher-layer protocols. For example, use an LU Type
0 for applications using IMS/VS to communicate with an IBM 4700
Finance Communication System.

LU Type 1
LU Type 1 is used for communication with single-device or multiple-device
data processing workstations in the following environments:
v Interactive
v Batch
v Distributed data processing.

This type of logical unit uses the SNA character string (SCS) or the
Document Content Architecture (DCA) data stream. For example, use an
LU Type 1 for applications using IMS/VS and communicating with an IBM
8100 Information System.

LU Type 2
An LU Type 2 is for an application that communicates with a single
display workstation in an interactive environment. It uses the SNA 3270
data stream. For example, use an LU Type 2 for applications using IMS/VS
or CICS/VS and communicating with an IBM 3179 Color Display Station.

LU Type 3
LU Type 3 is used for communication with a single printer. It uses the
SNA 3270 data stream. For example, use an LU Type 3 for applications
using CICS/VS and sending data to an IBM 3287 Printer attached to an
IBM 3274 Control Unit.

LU Type 4
LU Type 4 is used for either of the following:
v Communication with a single-device or multiple-device data processing

or word processing workstation in an interactive, batch, or distributed
data processing environment.
For example, use an LU Type 4 for an application that uses CICS/VS
and communicates with an IBM 6670 Information Distributor.

v Logical units in peripheral nodes that communicate with each other.
For example, use an LU Type 4 for an IBM 6670 Information Distributor
communicating with another 6670.

An LU Type 4 uses SNA character strings (SCS) for data processing
environments and Office Information Interchange (OII) Level 2 for word
processing environments.

LU Type 6.1
LU Type 6.1 is used for an application subsystem that communicates with

85

another application subsystem in a distributed data processing
environment. For example, use an LU Type 6.1 for an application program
using CICS/VS to communicate with an application program using
IMS/VS.

LU Type 6.2
LU Type 6.2 is used for an application that communicates with another
application in a distributed data processing environment. It uses either of
the following data streams:
v SNA general data stream (GDS)
v User-defined data stream.

LU Type 6.2 sessions provide communication between two Type 5 nodes, a
Type 5 node and a Type 2.1 node, or two Type 2.1 nodes. Examples of an
LU Type 6.2 include the following:
v An application that uses CICS/VS and communicates with another

application program that uses CICS/VS
v A CPI-C client transaction program that runs on a workstation and

communicates with a CPI-C server running on a CICS/VS host system
v An application in a System/38 that communicates with an application in

a System/36.

LU Type 7
An LU Type 7 is for an application that communicates with a single
display workstation in an interactive environment. It uses the 5250 data
stream. An example of this type of logical unit is an application running on
a System/34 that communicates with an IBM 5251 Display Station.

Below illustrates which LU types can be used with different types of
simulations.

Simulation Types LU Types
VTAMAPPL All
SNA All

86 WSim Workload Simulator: User's Guide

Part 2. Operation

87

88 WSim Workload Simulator: User's Guide

Chapter 13. Introduction to WSim operation

The remaining chapters of this book describe the following aspects of WSim
operation:
v Operating WSim on MVS with JCL and TSO CLISTs

On MVS, you can run WSim as a batch job or started procedure from the system
console or from a TSO ID as a CLIST. Running WSim under TSO may be
preferable when multiple users are running WSim simulations simultaneously or
when access to the system console is not convenient, but may be limited by
hardware constraints, such as communication controller equipment, depending
on the configurations being simulated. For large stress runs, it is recommended
that WSim be run from the system console, rather than under TSO to reduce the
amount of system resources used by WSim.

v Entering operator commands to control WSim
After you start WSim, you can control the simulation run by entering operator
commands. For example, you can use operator commands to:
– Start and stop networks or specific network resources
– Change network parameters, such as user time intervals, message logging,

intermessage delays, and report intervals
– Signal events
– Query network resources
– Recover hung terminals.

v Formatting and printing reports provided by WSim
WSim provides several operator reports that provide information about the
simulation run. This information is formatted and written to the printer
designated by the JCL or CLIST used to run WSim. These reports include:
– Interval reports, which provide counts of message traffic for the network

resources at user specified intervals.
– End of run reports, which summarize the message traffic data for the entire

simulation run.
– Inactivity reports, which provide information about terminals which have not

sent or received any data during a user specified interval.
v Logging messages, including how to control, route, inhibit, and restart message

logging with operator commands
WSim provides the capability to log all messages sent and received by the
simulated network. On MVS, the message log data can be written to a data set
(DASD or tape).

v Monitoring WSim with the Display Monitor Facility
With the Display Monitor Facility, you can actually see the formatted screens
and data being sent and received by a simulated 3270 terminal on a real 3270
terminal. For non-3270 simulated devices, you can display the actual data
streams. This facility is extremely useful during the development of scripts, as
well as a real-time monitor of terminal activity.

v Classifying, isolating, and reporting problems
WSim is typically used in a very complex environment involving many layers of
interacting hardware and software. An error in the setup or operation of any of

89

these layers can cause problems during a simulation run. You should become
familiar with some of the more common user errors that can occur and how to
isolate them.
In the event that you should encounter a problem in WSim itself, there are
recommendations for the types of problem documentation needed to diagnose
and correct the problem.

90 WSim Workload Simulator: User's Guide

Chapter 14. Running WSim

You can run WSim on MVS (either in batch mode, as a procedure, under TSO, or
under ISPF). For information about the execution parameters you can use to run
WSim, refer to “Using WSim execution parameters” on page 95.

Running WSim on MVS with JCL
The following sections discuss how to run WSim on MVS using JCL. They describe
the JCL needed to run WSim and discuss dynamic allocation of the SYSPRINT data
set.

Using JCL for CPI-C, VTAMAPPL or TCP/IP simulations
The example below shows the JCL you can use to run WSim for simulations of
CPI-C transaction programs or VTAM applications, or for TCP/IP simulations.
When running a CPI-C transaction program or VTAM application simulation,
WSim communicates either with a CPI-C transaction program or a VTAM
application within the same host or in another host. In the latter case, VTAM will
route traffic to the other host by means of a live SNA network. For a TCP/IP
simulation, WSim communicates to the TCP/IP virtual machine or address space
on the same host.

Use this JCL if you want to log messages on a tape. This can be found in the
WSIM.SITPSAMP data set as member WSIMPRC5.
//WSIMPRC5 PROC
//GO EXEC PGM=ITPENTER,REGION=2048K
//*OPTIONAL EXECUTION PARAMETER DATA SET
//PARMDD DD DSN=WSIM.PARMS,DISP=SHR
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//INITDD DD DSN=WSIM.TESTFILE,DISP=SHR
//MSGDD DD DSN=WSIM.MSGFILE,DISP=SHR
//* OPTIONAL, REQUIRED ONLY WHEN USING RATE TABLES
//RATEDD DD DSN=WSIM.SITPRTBL,DISP=SHR
//*
//* MESSAGE LOGGING OUTPUT DATA SET ON A TAPE
//LOGDD DD DSN=WSIM.MSGLOG,DISP=(NEW,KEEP),UNIT=TAPE,
// LABEL=(,NL),VOL=(,,,20)
//*
//* OPTIONAL NETWORK LOG DATA SET
//NTWRKLOG DD DSN=WSIM.NETLOG,DISP=(NEW,KEEP),UNIT=TAPE,
// LABEL=(,NL),VOL=(,,,20)
//*
//* OPTIONAL MESSAGE TEXT WORK DATA SET
//MSGDISK DD UNIT=SYSDA,SPACE=(4096,100)

Use the example JCL, shown below, if you want to log messages on a disk. This
can be found in the WSIM.SITPSAMP data set as member WSIMPRC6.
//WSIMPRC6 PROC
//GO EXEC PGM=ITPENTER,REGION=2048K
//*OPTIONAL EXECUTION PARAMETER DATA SET
//PARMDD DD DSN=WSIM.PARMS,DISP=SHR
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//INITDD DD DSN=WSIM.TESTFILE,DISP=SHR
//MSGDD DD DSN=WSIM.MSGFILE,DISP=SHR
//* OPTIONAL, REQUIRED ONLY WHEN USING RATE TABLES

91

//RATEDD DD DSN=WSIM.SITPRTBL,DISP=SHR
//* MESSAGE LOGGING OUTPUT DATA SET ON A DISK
//LOGDD DD DSN=WSIM.MSGLOG,DISP=(NEW,KEEP),UNIT=3380,
// VOL=SER=YOURPK,SPACE=(CYL,(10,10))
//* OPTIONAL NETWORK LOG DATA SET
//NTWRKLOG DD DSN=WSIM.NETLOG,DISP=(NEW,KEEP),UNIT=3380,
// VOL=SER=YOURPK,SPACE=(CYL,(10,10))
//* OPTIONAL MESSAGE TEXT WORK DATA SET
//MSGDISK DD UNIT=SYSDA,SPACE=(4096,100)

For more information about simulation of CPI-C transaction programs, VTAM
application programs, or TCP/IP client applications, refer to Part 1. Part 1,
“Planning and installation,” on page 1 and Creating WSim Scripts.

Description of the JCL data sets
Below describes the functions of each of the JCL statements used in the examples
shown in this chapter.

Statement Function

PROC Initiates the procedure.

EXEC Specifies the program name and any optional execution parameters.
The parameters are discussed in “Using WSim execution parameters”
on page 95.

PARMDD DD Defines an optional sequential data set containing ITPENTER execution
parameters. The following syntax rules apply to the records in this data
set:

v An asterisk (*) in column one denotes a comment record

v One or more parameters may be coded on each record delimited by
commas

v Any data following a trailing blank is considered a comment

v Leading blanks are allowed

v A trailing comma is not required to indicate continuation of
parameters on the next record.

The BLKSIZE for this data set must be a multiple of 80.

STEPLIB DD Defines one or more data sets containing the host processor modules.

SYSPRINT DD Defines the output printer. This statement is optional when running on
MVS. (See Notes No.1)

INITDD DD Defines a partitioned data set containing the network definition
statements. The BLKSIZE for this data set must be a multiple of 80,
and it must use a fixed block record format (RECFM=FB).

This data set can be the same as the MSGDD data set.

MSGDD DD Defines a partitioned data set containing the message definition decks.
The BLKSIZE for this data set must be a multiple of 80, and it must
use a fixed block record format (RECFM=FB).

This data set can be the same as the INITDD data set.

RATEDD DD Defines a partitioned data set containing the rate table members. This
statement is required only when using rate tables.

LOGDD DD Defines the sequential output data set used for message logging. This
statement is required when MLOG=YES is coded in the network. (See
Notes No.2)

NTWRKLOG DD Defines a separate sequential log data set for the network. You can use
operands on the NTWRKLOG statement to specify your own DD
statement names to replace NTWRKLOG DD.

92 WSim Workload Simulator: User's Guide

MSGDISK DD Defines the sequential work data set for paging MSGTXT, user table,
and IF statement control block data. You can use operands on the
MSGDISK statement to specify your own DD statement names to
replace MSGDISK DD. (Refer to the MSGDISK statement description in
WSim Script Guide and Reference for more information.)

Notes:

v The SYSPRINT data set is dynamically allocated if the SYSPRINT DD statement
is omitted in the JCL. Use the O (Output Data) operator command to release any
data accumulated so far. Otherwise, all SYSPRINT output is held until the job
ends, unless you directly allocated SYSPRINT data to a real printer. Refer to
“Allocating the SYSPRINT data set” for more information.

v Change the volume and unit parameters on the LOGDD DD or NTWRKLOG
DD statement if you want to allocate more than one tape drive. The LOGDD DD
or NTWRKLOG DD statement has a BLKSIZE default and minimum value of
8160, and a default value of 5 for the number of channel programs (NCP). If you
experience lost message log data (indicated by error message ITP030I), you may
increase these two values. For example, to allocate 10 buffers, each having 23476
bytes of virtual storage, for message logging, you could specify the parameters
DCB=(BLKSIZE=23476,NCP=10).
Note that when running the postprocessors, the BLKSIZE parameter on the
SYSUT1 DD statement (if specified) must match or exceed what was specified on
the LOGDD DD statement of the simulation run.

v When running under TSO, the BLKSIZE and NCP parameters can only be
specified for NEW or MOD data sets.

v The maximum value for BLKSIZE is 32760. The maximum recommended value
for a 3350 disk is 19069. The maximum recommended value for a 3380 disk is
23476. The maximum recommended value for a 3390 disk is 27998.

v When using a DASD for the message-logging output data set, the SPACE
parameter must define a data set large enough to contain all message-log data
generated. The DASD used must be capable of recording blocks 8160 bytes long.

Allocating the SYSPRINT data set
When WSim executes ITPENTER on MVS, it attempts to dynamically allocate
SYSPRINT as a SYSOUT data set. Allocating SYSPRINT lets WSim produce online
output reports without dedicating a real printer to WSim. The output class defaults
to the MSGCLASS of the job, and the space allocated is the system default. If you
want to change the class, space, or some other parameter, you can use the
superzap service aid available with MVS to modify the entries in CSECT ITPS99TU
in module ITPS99TU. The module format is described in the next section.

If you include the SYSPRINT DD statement in the JCL you use to run WSim, the
dynamic allocation fails and the SYSPRINT output is handled in the standard way.
In order to use dynamic allocation of the SYSPRINT data set, you must omit the
SYSPRINT DD statement from the JCL.

When you use dynamic allocation, all data written to SYSPRINT can be printed by
the MVS system writer routines without affecting operation. To release the spooled
output, enter the O (Output) operator command without operands. The O
command causes the SYSPRINT data set to be closed, freed (since it is allocated
with the FREE=CLOSE attribute), reallocated, and reopened.

Chapter 14. Running WSim 93

Formatting ITPS99TU
The ITPS99TU module is made up of 10 fullword pointers that address text units,
followed by the 10 text units used in dynamic allocation. The first three text units
specify the DDNAME, SYSOUT, and FREE=CLOSE parameters and should not be
changed. You can use the last seven text units to modify the default class, space
allocation, output form, and other parameters. Each of the last seven text units is
14 bytes long, and all bytes are initialized to binary zeros. The fourth text unit (the
first one available for modifying a parameter) is located at offset X'52' in the
CSECT ITPS99TU. The seven text units for modifying parameters are located at
hexadecimal offsets 52, 60, 6E, 7C, 8A, 98, and A6.

You can find information about the formats of the various text units for data set
name (DSNAME) allocation in MVS/ESA System Programming Library: Application
Development Guide, GC28-1852.

Running WSim on MVS with a TSO CLIST
You can run WSim under the control of TSO by starting ITPENTER from a TSO
terminal. Running WSim under TSO can be useful in situations where you do not
have access to the system console or where you want operation to be transparent
to system operation personnel. For example, you can run WSim under TSO when
you are conducting function tests on new applications. But, you would probably
not want to run WSim under TSO when you are conducting a stress test because
WSim requires more system resources under TSO.

Planning considerations
There are two special installation requirements for running WSim under TSO:
program authorization and the use of the SSP Loader/Dump utility. Refer to
Part 1, “Planning and installation,” on page 1 and WSim Program Directory for
information about planning.

If WSim is going to write its message-log data set on a tape, the TSO user ID
under which WSim is running must have the MOUNT logon attribute specified.

Communicating with a TSO terminal
When running under TSO, WSim issues TGET and TPUT macros to allow
communication with the TSO terminal operator. All operator messages are written
to the TSO user's terminal with a TPUT macro. Once each second, a TGET macro
with the NOWAIT option is issued to retrieve any TSO terminal operator input. If
messages being written to the TSO terminal are overwriting the input before it can
be sent, the terminal operator can issue a null message (the Enter key alone);
WSim will write the message ITP001E and issue a TGET with the WAIT option.
This suspends output until the operator enters the input.

Using a TSO CLIST
The example below shows how you can use a TSO CLIST to allocate data sets and
devices, call the WSim load module for execution, and free the data sets and
devices. See “Description of the JCL data sets” on page 92 for a description of the
CLIST data sets.

Note: STEPLIB should be pointing to WSIM.SITPLOAD through the user logon
procedure. You should also include a SYSDUMP statement in the user logon
procedure.

94 WSim Workload Simulator: User's Guide

This can be found in the WSIM.CLIST data set as member WSIMRUN.
ALLOC DDNAME(SYSPRINT) UNIT(E) NEW
ALLOC DDNAME(PARMDD) DSNAME(’WSIM.PARMS’) SHR
ALLOC DDNAME(INITDD) DSNAME(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(MSGDD) DSNAME(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(RATEDD) DSNAME(’WSIM.SITPRTBL’) SHR
ALLOC DDNAME(LOGDD) NEW UNIT(TAPE) VOLUME(WSIMTP)-

LABEL(NL)
CALL ’WSIM.SITPLOAD(ITPENTER)’
FREE DDNAME(SYSPRINT)
FREE DDNAME(INITDD)
FREE DDNAME(MSGDD)
FREE DDNAME(RATEDD)
FREE DDNAME(LOGDD)

Notes:

v If you are using a user exit program, concatenate the data set that contains the
user exit module to WSIM.SITPLOAD in the TSO logon procedure.

v The BLKSIZE and NCP parameters can only be specified for NEW or MOD data
sets. If you are logging messages to disk and specifying BLKSIZE and NCP, your
ALLOC statement should look something like the following:

ALLOC DDNAME(LOGDD) MOD DSNAME(’WSIM.LOG’) BLKSIZE(23734) -
NCP(5)

Running WSim under ISPF
You can also run WSim under ISPF by invoking the WSim/ISPF Interface. To do
this, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF2. The method you use

to do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 5 from the WSim/ISPF Interface main panel and press Enter. The
Run a Simulation panel is displayed.

Note: You can also type RUNWSIM on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

3. Fill in the appropriate fields.
4. Select the appropriate configurations by typing a / or s next to the selection

field. You can select any combination of configurations that you want to run.
5. Press Enter. Depending on the configuration you selected, the appropriate

full-screen pop-up panel is displayed. Fill in the appropriate information on
this panel and press Enter.

For more information on the WSim/ISPF Interface, refer to WSim Utilities Guide.

Using WSim execution parameters
This section describes the execution parameters that you can use when running
WSim. You can include execution parameters on the EXEC statement (MVS) or in a
data set defined on the PARMDD statement. Parameters in the PARMDD data set
are processed first. When you run WSim as a started procedure, you can specify

2. Alternatively the WSIMISPF exec can be used to start the interface. This exec starts the WSim/ISPF Interface without having the
data sets concatenated in the TSO logon procedure.

Chapter 14. Running WSim 95

execution parameters on the MSV START operator command. The parameters you
specify override any parameters in the PARMDD data set or on the EXEC
statement. All parameters are optional.

CPUSTATS
Specifies that host-processor wait time statistics are collected for WSim.
Message ITP138I is written to the operator console for the main simulation
task for each minute of the simulation run. The message will give the
percentage of the previous minute that the task was not waiting for work
to be done.

DMUSERPW=cpssword
Specifies the password you must enter after logging onto the Display
Monitor Facility, where cpssword is a 1- to 8-character name. If
DMUSERPW is not specified, no password entry is required after logging
onto the Display Monitor Facility.

DMAPPL=applid
Specifies the name of the APPL defined to VTAM for Display Monitor
Facility sessions.

NCP=n
Specifies the default number of buffers allocated for output to each log
data set. You can override this value with the NCP suboperand of the DCB
operand on the DD statement for the log data set (MVS only) or with the
NCP operand on the NTWRKLOG statement for individual network log
data sets. The default NCP value is 5. The maximum NCP value allowed is
255; the minimum is 2. If 0 or 1 is specified, 2 will be used.

NOWTOR
Allows WSim to be executed under MVS as a batch job without issuing a
WTOR for operator control. When NOWTOR is specified, no WTOR will
be issued and WSim must either be ZENDed by an operator command
from an active network or canceled by the operator.

NTWRK=netname
Specifies the name of a network that is to be automatically initialized and
started without operator intervention. netname is the name of the INITDD
data set member containing the wanted network definition.

NTWRKL=netname
Performs the same function as the NTWRK parameter, but also specifies
that the network will be listed on the SYSPRINT data set as it is initialized.

PRTLNCNT=nnn
Specifies the maximum number of lines to be printed on a page of output
before ejecting to a new page. nnn is an integer from 35 to 255. The default
value for nnn is 60.

ROUTCDE=(n,n,...)
Specifies the message routing codes to be used in writing messages to the
operator. Each n specifies a system routing code that defines a console
destination for all write-to-operator (WTO) and write-to-operator-with-
reply (WTOR) messages written by WSim. n is an integer from 1 to 16. The
default is 8 if WSim is started from a batch job. By default, if WSim is
started as a procedure, the messages will be routed to the console that
started the procedure or to the console at which the operator command
was entered.

This parameter is meaningful only in an MVS environment outside of TSO.

96 WSim Workload Simulator: User's Guide

Understanding return codes
When WSim ends, a return code is set to indicate the status from the operation.
WSim can return the following codes:

Code Meaning
0 Run complete with no errors.
8 Required initiator data set could not be opened.
12 Invalid EXEC parameter specified.

Chapter 14. Running WSim 97

98 WSim Workload Simulator: User's Guide

Chapter 15. Using operator commands

This chapter describes how to use operator commands to control a simulation.

Introducing operator commands
You can use operator commands to control various aspects of a simulation. You
usually enter these commands from a console, but you can also generate them
automatically by using the OPCMND statement in a message generation deck.

When you enter operator commands at the console, you can control parts of the
simulation while WSim is running. When you enter operator commands on the
OPCMND statement in a message generation deck, you can automate operation so
that the network controls itself during operation.

The following sections describe entering operator commands at the console and
with the OPCMND statement.

Specifying operator commands at the console
WSim can use the MVS MODIFY command interface to receive the operator
commands you enter at the operator console. These interfaces eliminate the need
for WTOR processing by the main simulation task.

Although you can use the WTOR interface, the system MODIFY method is the
preferred method for entering commands manually. This method also allows WSim
to automatically echo the commands to the MVS job log. If you do not use the
system MODIFY method, a time-stamped outstanding WTOR message is issued to
enable you to enter console commands. In this case, the operator must preface each
command with the number of the currently outstanding WTOR.

WSim uses the WTOR interface if WSim is started as a batch job.

Specifying operator commands with the OPCMND statement
The OPCMND statement enables you to enter all operator commands other than
console recovery subcommands from a message generation deck or STL program.
Options are provided to include network names in the generated command. The
commands are checked for validity by the console command routines when they
are executed, not during network initialization. You should ensure that using these
commands does not affect other user networks running at the same time.

Refer to Creating WSim Scripts and WSim Script Guide and Reference for more
information about the OPCMND statement.

Understanding the order of execution for operator commands
All operator commands, whether entered from the console or a message generation
deck, are executed in the order they are entered. Each command is queued until
the previously entered command has completed execution. The D (Dump), E
(Restart Message Logging), O (Output), and T (Trace) commands that request
printer or tape output are considered complete when the requests have been
queued to the appropriate subtasks. Any other command is considered complete
when all actions related to that command are accomplished.

99

Specifying resources with operator commands
Operator commands allow you to modify and control WSim. To use them
effectively, however, you should understand how operator commands affect
simulated resources.

From the user's standpoint, WSim consists of networks with variable numbers of:
v CPI-C transaction programs (APPCLU)
v VTAM applications (VTAMAPPL)
v TCP/IP resources (TCPIP)

The level of qualification in the operator command determines the resource
operated on by WSim. You specify the level of qualification either by entering the
name of the desired resource or, in some cases, by entering the name of the desired
resource preceded by all higher-level resource names required to identify the
desired resource uniquely. For example, you can operate on the following
resources:
v An entire network by specifying the network name
v A single LU by specifying the LU name.

You can operate on the networks independently of each other, so you can cancel
one network without affecting any other networks. You can also change networks
globally, with one command affecting all networks.

Entering operator commands at the console
When you enter operator commands at the console, the command can start in any
position. Blanks between commands and operands are ignored. The command can
be in uppercase or lowercase letters. The maximum length of any command is 120
bytes, including blanks and comments.

Commands are presented to WSim by either the MODIFY or WTOR (Write to
Operator with Reply) command interface when you enter the commands at the
console. You can include comments with all commands containing at least one
operand.

The following sections describe how to enter operator commands for MVS and
TSO. See Chapter 20, “Specifying operator commands,” on page 137 for a
description of these commands.

Entering operator commands on MVS with WSim as a started
procedure

To operate WSim as a started procedure on MVS, use the following steps to enter
operator commands:
v Start the simulation run with an MVS S (Start) command. For example:

S WSIM.T,,,’ execution parameters’

This command starts WSim and assigns the name T as the identifier. From here
on, T will be used when issuing the F (Modify) command for WSim.

v Enter the F (Modify) command using the following format:
F T, command

where command is the full operator command string to be executed. For example:
F T,I NETNAME,L,S

100 WSim Workload Simulator: User's Guide

When you use these steps to enter a command, WSim automatically echoes the
command to the MVS job log. When you start WSim by using an MVS START
command, WSim routes messages to specific operator consoles using the console
identifier of the console where the START, STOP, or MODIFY commands are
entered. WSim uses the full four-byte extended console identifier in routing
responses and also preserves any command and response token (CART) that may
have been supplied with the command. All messages written by WSim are flagged
as responses so that they will appear as solicited messages when routed to a TSO
extended console.

Entering operator commands on MVS with WSim as a batch
job

When operating WSim as a batch job on MVS, use the following steps to enter
operator commands:
1. Submit the simulation run as an MVS batch job.
2. Wait for the following WTOR message to appear on your operator console:

nn ITP001E hh.mm.ss.th WSIM

3. Enter the operator command using the following format:
R nn, command

where nn is the WTOR number and command is the full operator command
string to be executed. For example:
R 01,I NETNAME,L,S

Entering operator commands when executing directly under
TSO

To operate WSim under TSO, start the simulation run with a CLIST. You can
invoke this CLIST on any command line, or you can use option 6 on the main ISPF
menu.

You can enter operator commands from a TSO terminal. The commands do not
have to be prefixed with the F (Modify) command. To initialize and start a network
from a TSO terminal, enter:
I NETWORK1,L,S (Initialize, list, and start the network NETNAME)

You can stop WSim with the Z (Closedown) command:
ZEND

If your network writes messages to the screen so quickly that you cannot enter
commands, press Enter. This halts the messages until you enter a command or
press Enter again. However, messages generated during the time that output to the
screen is halted are lost.

Controlling WSim and simulated resources
This section discusses how to use the operator commands to control WSim and the
simulated networks. See Chapter 20, “Specifying operator commands,” on page 137
for a complete discussion of the commands presented in this section.

Starting and stopping WSim
You start WSim under MVS by submitting a job to the operating system, using a
TSO CLIST, or starting it as a procedure. These start-up methods are discussed in
“Running WSim” on page 66.

Chapter 15. Using operator commands 101

Starting WSim
During start-up, WSim allocates buffers, initializes control blocks, and attaches
sub-tasks. WSim then displays message ITP016I, the level and date of the release.
WSim displays message ITP003I, WSIM INITIALIZATION COMPLETE, when
start-up processing is complete. If you are using the MODIFY command interface,
you may enter operator commands at this time. If you are using the WTOR
interface, this message is followed by the WTOR message, ITP001E, which allows
you to enter operator commands.

Stopping WSim
You can stop WSim at any time by entering the ZEND operator command. When
the ZEND command is processed, all active networks are stopped and canceled,
WSim subtasks are detached, and control is returned to the operating system.
When you are using the MODIFY interface, you may also stop WSim using the
system operator STOP command (P jobid).

Initializing and starting a network
After WSim start-up processing is complete, you must initialize a network to be
simulated. The network may or may not have been preprocessed, but the network
definition statements must reside in the INITDD data set, and the message
generation deck statements must reside in the MSGDD data set.

Initializing a network
The I (Initialize) command enables you to specify a member in the INITDD data
set that is the network to be initialized. For example, the following command:
I TESTNET

causes WSim to initialize the network named TESTNET. The initialization consists
of:
v Checking the syntax of all statements in the network
v Building all control blocks for the network

At the end of initialization, the network remains idle until you enter other operator
commands to start the simulated resource activity.

The I command operands provide for listing the network statements on the printer
during initialization and for automatically starting network activity at the end of
initialization.

For example, the following command:
I TESTNET,LN,S

initializes the network TESTNET, prints the network definition statements, and
starts activity for all simulated resources in the network. The LN operand is
especially useful for obtaining a listing of the network definition statements
without tying up the printer with long listings of the message generation decks.

Use the NTWRK and NTWRKL execution parameters to automate the network
start-up process further. These parameters name a network to be initialized and
started (NTWRK), and optionally listed (NTWRKL), automatically at the end of the
WSim initialization processing.

Starting network resources
If you do not use the automatic network start facilities, then you must use the S
(Start) command to begin network activity. The S command can start activity for all

102 WSim Workload Simulator: User's Guide

initialized networks, for a single initialized network, or for a single TCPIP,
APPCLU, or VTAMAPPL within a network. The following command:
S

starts activity for all simulated resources in all initialized networks.

You can enter the S command for specific TCPIP, APPCLU, and VTAMAPPL
resources if you want to start network activity in a slower, more controlled manner.
The FE (Future Event) statement and the STIME (Start Time) operand also
contribute to the controlled starting of network resources. Refer to Creating WSim
Scripts for discussions of these functions.

Stopping network resources
You can stop the activity for all active networks, a single network or an APPCLU,
VTAMAPPL, or TCPIP resource within a network by using the P (Stop Network)
command. The P operator command with no operands stops all active networks.
The operands name the network or resources you want to stop.

Displaying the status of network resources
WSim provides two operator commands for displaying the status of currently
active networks.

The G (Terminal Status Query) command displays those simulated terminals which
are active, inactive, quiesced, ready, or terminated.

The Q (Query) command displays at the operator console the current status of a
network resource (NETWORK, TCPIP, device, logical unit, APPCLU, transaction
program, VTAMAPPL). The following sections explain the output provided for
each type of resource.

Query without specifying resources
If you enter a Q (Query) command without specifying resources, console message
ITP006I or ITP012I is displayed for each initialized network. Refer to Figure 10 to
see messages displayed when you specify the Q command and do not specify a
resource, as shown below. An underscore indicates where a network name appears.

Command entered:
Q

ITP006I NETWORK ________ STARTED
ITP012I NETWORK ________ STOPPED

Query network
You can enter a Q (Query) command and specify a network. Figure 11 shows the
messages displayed when you specify the Q command and a network using the
syntax shown below. Underscores indicate where resource-specific information
appears. Refer to “Q-Query network resources” on page 156 for more information
about specifying networks and network resources.

Command entered:
Q ntwrk

Figure 10. Query without resource specified

Chapter 15. Using operator commands 103

Detailed information about the data in Figure 11 is provided below.

NTWRK=
Is the symbolic network name from the NTWRK statement.

ITIME=
Is the time in minutes between network interval reports.

SCAN=
Gives the values of the variables x, y, and z defined under the SCAN
operand of the NTWRK statement. For more information, refer to WSim
Script Guide and Reference. If the scan function has not been defined, then
“0,0,NONE” is displayed for x, y, and z.

EMTRATE=
Gives the expected message transfer rate followed by the current UTI
adjustment interval in seconds.

REPORT=
Is either FULL, LINE, RATE, or NONE, indicating the type of interval
report to be printed.

CONRATE=
Is either YES or NO, indicating whether or not the interval report message
rates will be displayed at the operator console.

MONCMND=
Is either ON or OFF, indicating whether operator commands entered from
a message generation deck with the OPCMND statement will be monitored
at the operator console.

DEBUG=
Is either ON or OFF, indicating whether or not the network DEBUG option
is active.

ITP140I NTWRK=________ ITIME=___ SCAN=___,___,___ EMTRATE=_____,_____
ITP140I REPORT=____ CONRATE=___ MONCMND=___ DEBUG=___
ITP140I NSEQ __________
ITP140I NC01-05 __________ __________ __________ __________ __________
ITP140I NC06-10 __________ __________ __________ __________ __________
ITP140I NC11-15 __________ __________ __________ __________ __________
ITP140I NC16-20 __________ __________ __________ __________ __________
ITP140I NC21-25 __________ __________ __________ __________ __________
ITP140I NC26-30 __________ __________ __________ __________ __________
ITP140I NC31-35 __________ __________ __________ __________ __________
ITP140I NC36-40 __________ __________ __________ __________ __________
ITP140I NC41-45 __________ __________ __________ __________ __________
ITP140I NC46-50 __________ __________ __________ __________ __________
ITP140I NC51-55 __________ __________ __________ __________ __________
ITP140I NC56-60 __________ __________ __________ __________ __________
ITP140I NC61-63 __________ __________ __________
ITP140I NTWRK SWITCHES 01-04=____ 05-08=____ 09-12=____ 13-16=____
ITP140I 17-20=____ 21-24=____ 25-28=____ 29-32=____
ITP140I NTWRK UTI VALUE=_____
ITP140I INDIVIDUAL UTI VALUES:
ITP140I _______ =___ _____=___ _____=___ _____ =___.
ITP140I STARTED=___ HEADING=_____________________
ITP140I SUBSTITUTE DECK=________ NCB LOCATION=______
ITP140I DEVs,LUs,TPs: ACTIVE=_____ INACTIVE=_____ QUIESCED=_____
ITP140I TERMINATED=_____ READY=_____

Figure 11. Network query

104 WSim Workload Simulator: User's Guide

NSEQ=
Is the value of the network sequence counter.

NCn-n The values of the network index counters are displayed with the headings
NCn-n, where n can be from 01 to 4095. Only those counters defined will
be displayed.

NTWRK SWITCHES
The 4095 network switches are displayed in groups of 4 bits on the lines
beginning with NTWRK SWITCHES. Each bit has the value 1 (for ON) or
0 (for OFF).

NTWRK UTI VALUE=
Is the value of the network-level user time interval (UTI) in hundredths of
seconds.

INDIVIDUAL UTI VALUES:
Is a list of individual UTIs that have been defined for the network. The
label of the individual UTI is displayed, followed by the UTI value in
hundredths of seconds. Refer to Creating WSim Scripts and WSim Script
Guide and Reference for more information about defining and using
individual UTIs.

STARTED=
Is either YES or NO, indicating whether or not the network has been
started.

HEADING=
Is the 24-character heading for the interval report.

SUBSTITUTE DECK=
Is the name of the message generation deck to be substituted for a deck
that causes automatic terminal recovery. If the SCAN operand has not been
defined, then NONE is displayed.

NCB LOCATION=
Is the virtual storage address of the NCB control block. This field is
displayed only if the network DEBUG option is active.

The ACTIVE, INACTIVE, QUIESCED, READY, and TERMINATED counts are
based on started devices, logical units, and transaction programs only. The ACTIVE
and INACTIVE counts represent the number of active and inactive devices, logical
units, and transaction programs with respect to the values coded on the SCAN
operand on the NTWRK statement. The QUIESCED count represents the number
of quiesced devices, logical units, and transaction programs. The READY count
represents the number of server transaction program instances that are waiting for
incoming attach requests. The TERMINATED count represents the number of
transaction program instances for which message generation activity has
completed. Each device, logical unit, or transaction program started is included in
one of the subject counts.

Query TCP/IP connection, APPC LU, or VTAM application
You can enter a Q (Query) command and specify a TCP/IP connection, APPC LU
or VTAM application. Figure 12 displays the messages when you specify the Q
command and one of these resources. Underscores indicate where resource-specific
information appears. Refer to “Q-Query network resources” on page 156 for more
information about the different resources you can specify.

Command entered:
Q{ tcpip| appclu| vtamappl}

Chapter 15. Using operator commands 105

The statements in Figure 12 are displayed when you request a query for an APPC
LU. When you request a query for a TCP/IP connection or VTAM application,
these statements and the statements for a terminal are displayed. WSim maintains
a terminal control block (TRM) associated with each TCP/IP connection or VTAM
application. Thus, if a TCP/IP connection or VTAM application is being displayed,
additional statements describing the terminal are displayed.

NAME=
Is the 8-character alphanumeric EBCDIC name. This field is only displayed
for a TCP/IP connection, a CPI-C transaction program, or a VTAM
application.

TYPE=
Is one of the following identifications: TCP/IP, APPCLU, or VTAMAPPL.

STARTED=
Is either YES or NO, indicating whether or not the resource has been
started.

LSEQ=
Is the value of the line sequence counter.

LCn-n The values of the line index counters are displayed with the headings
LCn-n, where n is between 01 and 4095. Only defined counters are
displayed.

LIN LOCATION=
Is the virtual storage address of the LIN control block. This field is
displayed only if the network DEBUG option is active.

Query device
You can enter a Q (Query) command and specify a device. Figure 13 displays the
messages when you specify the Q command and a single device. Underscores
indicate where resource-specific information appears. num may be the asterisk
character (*) to indicate the last LU session number or last TP instance number.
Refer to “Q-Query network resources” on page 156 for more information about the
different resources you can specify.

Command entered:
Q { dev| lu[- num]| appclu.tp[- num]| tp[- num]}

ITP141I NAME=________ TYPE=____ STARTED=___
ITP141I LSEQ __________
ITP141I LC01-05 __________ __________ __________ __________ __________
ITP141I LC06-10 __________ __________ __________ __________ __________
ITP141I LC11-15 __________ __________ __________ __________ __________
ITP141I LC16-20 __________ __________ __________ __________ __________
ITP141I LC21-25 __________ __________ __________ __________ __________
ITP141I LC26-30 __________ __________ __________ __________ __________
ITP141I LC31-35 __________ __________ __________ __________ __________
ITP141I LC36-40 __________ __________ __________ __________ __________
ITP141I LC41-45 __________ __________ __________ __________ __________
ITP141I LC46-50 __________ __________ __________ __________ __________
ITP141I LC51-55 __________ __________ __________ __________ __________
ITP141I LC56-60 __________ __________ __________ __________ __________
ITP141I LC61-63 __________ __________ __________
ITP141I LIN LOCATION=__________

Figure 12. Query of a TCPIP, APPCLU or VTAMAPPL

106 WSim Workload Simulator: User's Guide

The response in Figure 13 is displayed when you request a query for any device
capable of message generation.

NAME=
Is the symbolic device name from the DEV, LU, or TP statement. The name
is followed by:

-NOT
STARTED

if the line has not been started,

-INACTIVE if the device is inactive,

-ACTIVE if the device is active,

-READY if the device is a CPI-C TP server instance that is waiting for an incoming
attach request,

-TERMINATEDif the device is a CPI-C instance which has completed all message generation
activity.

TYPE=
Is up to 8 characters describing the device type. These descriptions come
from the valid values of the TYPE and LUTYPE operands on the DEV and
LU statements. If this device is a CPI-C transaction program, the type
reflects APPC-TP.

QUIESCED=
Is either YES or NO, indicating whether or not the device is quiesced.

MSG DELAY=
Gives the intermessage delay setting for the device. For information about
the DELAY operand under the DEV, TP, or LU statement, refer to WSim
Script Guide and Reference.

ITP143I NAME=________ __________ TYPE=________ QUIESCED=___
ITP143I TPTYPE=______ CPITRACE=_______ INSTANCE=_____________
ITP143I MSG DELAY=________________________ BLK DELAY=________________________
ITP143I WAIT=______ PRTSPD=_______ CURSOR=_______ INHIBIT=___
ITP143I SERVADDR=_______________ TCPSTATE=________ NXTSERVR=_______________
ITP143I WAIT EVENTS = ________
ITP143I ON EVENTS = ________
ITP143I INSERT PATH=____ PATHS=__ __ __ __ __ __ __ __ __ __ __ __
ITP143I CURRENT PATH=____ PATH ENTRY=___
ITP143I CURRENT DECK=________ CURRENT STATEMENT: WSIM=___, STL=___
ITP143I MSGTRACE=___ STLTRACE=___ INTERMESSAGE DELAY=_______
ITP143I ACTIVE UTI IS________=_____
ITP143I DSEQ __________
ITP143I DC01-05 __________ __________ __________ __________ __________
ITP143I DC06-10 __________ __________ __________ __________ __________
ITP143I DC11-15 __________ __________ __________ __________ __________
ITP143I DC16-20 __________ __________ __________ __________ __________
ITP143I DC21-25 __________ __________ __________ __________ __________
ITP143I DC26-30 __________ __________ __________ __________ __________
ITP143I DC31-35 __________ __________ __________ __________ __________
ITP143I DC36-40 __________ __________ __________ __________ __________
ITP143I DC41-45 __________ __________ __________ __________ __________
ITP143I DC46-50 __________ __________ __________ __________ __________
ITP143I DC51-55 __________ __________ __________ __________ __________
ITP143I DC56-60 __________ __________ __________ __________ __________
ITP143I DC61-63 __________ __________ __________
ITP143I DEV SWITCHES: 01-04=____ 05-08=____ 09-12=____ 13-16=____
ITP143I 17-20=____ 21-24=____ 25-28=____ 29-32=____
ITP143I TIME STAMP:________ DATA SENT:____________________
ITP143I IN HEX:____________________________________
ITP143I TIME STAMP:________ DATA RECV:________________
ITP143I IN HEX:____________________________________
ITP143I DEV LOCATION=______
ITP143I HALF SESS=___ DFC STATE=_______
ITP143I LU-LU SESS=___ PARTNER=_________________
ITP143I SEND/RECV MODE=__________ __ HDX PROTOCOL=______ HDX STATE=____
ITP143I TH FORMAT=____ SEQ NO.: PRI-TO-SEC=_____ SEC-TO-PRI=_____

Figure 13. Device query

Chapter 15. Using operator commands 107

BLK DELAY=
Gives the interblock delay setting for the device. NONE is displayed if this
device has no interblock delays.

WAIT=
Is either ON or OFF, indicating whether or not the device has been placed
into a wait state during message generation.

PRTSPD=
Is up to 5 digits specifying the processing delay in characters per second
for received messages. This field is only displayed for nondisplay devices.

CURSOR=
Gives the cursor position for a display device. The row number is
displayed first, followed by the column number. If the cursor position has
not been initialized, then NOT SET is displayed. This field is only
displayed for display devices.

INHIBIT=
Is either YES or NO, indicating whether or not the device's keyboard is
inhibited from entering data. This field is only displayed for display
devices.

SERVADDR=
Specifies the IP dotted decimal address of the TCP/IP server to which you
are currently connected.

TCPSTATE=
Specifies the state of the device as it establishes a TCP/IP session and
begins data exchange. Valid states are:

CLOSED The device has no current or pending connection.

OPENING A connection attempt has been initiated for this device.

HOSTID Local Host ID has been obtained.

SOCKET The device obtained a socket for communication.

NEGO The device is performing TCP/IP negotiations.

SOCKOPT Socket options have been set.

READY The TCP/IP connection for the device is ready and available for data transfer.

CLOSING The device is closing its TCP/IP connection.

NXTSERVR=
Reflects the altered SERVADDR value if you altered the value. It is used
upon reconnection, and becomes the current server at that point.

WAIT EVENTS=
Gives a list of events upon which the terminal is waiting. All these events
must be posted as complete before normal message generation for the
terminal can resume.

CPITRACE=
Indicates the level of CPI-C transaction programming tracing requested.

INSTANCE=
Indicates the number of initial transaction program instances requested and
the maximum number of instances that may be active concurrently.

ON EVENTS=
Gives a list of events for which the terminal has issued an ON statement
and have not been signaled. These events describe active “on” conditions.

108 WSim Workload Simulator: User's Guide

INSERT PATH=
Is either ACT (an inserted path is active), PEND (an inserted path is
pending active), or NONE (no inserted path).

PATHS=
Gives the names of the PATH statements defined for this device. As many
PATH names as will fit are displayed on this display line, with additional
path names displayed on the following lines without a label. NONE is
displayed if PATH statements are not defined for the device.

CURRENT PATH=
Is the name of the PATH statement currently being processed. NONE is
displayed if a PATH statement is not currently associated with the device.

PATH ENTRY=
Is the index into the current PATH statement for the message generation
deck or STL procedure active for the device. This field is not displayed if
CURRENT PATH=NONE.

CURRENT DECK=
Is the name of the message generation deck or STL procedure currently
being processed. NONE is displayed if no message generation deck or STL
procedure is active for the device.

CURRENT STATEMENT: WSIM=
Is the number of the message generation statement currently being
processed.

CURRENT STATEMENT: STL=
Is the number of the STL statement currently being processed. If
STLTRACE=NO is coded in your network definition, @program is not
coded in your STL program, or the PROGRAM= execution parameter is
not specified, STL statement numbers are not displayed.

MSGTRACE=
Is either YES or NO, indicating whether the message trace function is
active.

STLTRACE=
Is either YES or NO, indicating whether the STL trace function is active.

INTERMESSAGE DELAY=
Is either ACTIVE or NOT ACTIVE, indicating the current intermessage
delay status.

ACTIVE UTI IS
Indicates the individual UTI that is active for the device. It lists the label of
the individual UTI and the UTI value in hundredths of seconds. (Refer to
Creating WSim Scripts and WSim Script Guide and Reference for more
information about defining and using individual UTIs.)

DSEQ=
Is the value of the device sequence counter.

DCn-n Gives the values of the device index counters, displayed with the headings
DCn-n. n is between 01 and 4095. Only those counters defined are
displayed.

DEV SWITCHES
The 4095 device switches are displayed in groups of 4 bits each on the
lines beginning with DEV SWITCHES. Each bit has the value 1 (for ON) or
0 (for OFF).

Chapter 15. Using operator commands 109

TIME STAMP
Is the time when the last message was transmitted or received by the
device.

DATA SENT
Gives the first 20 characters of the message in EBCDIC. Unprintable
characters are displayed as periods. If more than 20 bytes of data were sent
and you coded the CRDATALN operand for this device with a value
greater than 20, the remaining data is displayed in 32-byte segments after
the hexadecimal translation of the first 20 bytes. If the device has not
transmitted a message, then the entire display line beginning with TIME
STAMP: is replaced by NO MESSAGE TRANSMITTED. If the device is a
CPI-C transaction program and no conversations are currently active, the
DATA SENT and DATA RECEIVED lines are replaced with NO ACTIVE
CONVERSATIONS.

IN HEX
Gives the hexadecimal representations of the portion of the transmitted or
received message on the previous line.

DATA RECV
Gives the first 20 characters of the message in EBCDIC. Unprintable
characters are displayed as periods. If more than 20 bytes of data were
received and you coded the CRDATALN operand for this device with a
value greater than 20, the remaining data is displayed in 32-byte segments
after the hexadecimal translation of the first 20 bytes. If the device has not
received a message, then the entire display line beginning with TIME
STAMP: is replaced by NO MESSAGE TRANSMITTED. If the device is a
CPI-C transaction program and no conversations are currently active, the
DATA SENT and DATA RECEIVED lines are replaced with NO ACTIVE
CONVERSATIONS.

DEV LOCATION=
Is the virtual storage address of the DEV control block. This field is
displayed only if the network DEBUG option is active.

The next five display lines are only displayed for SNA devices.

HALF SESS=
Is either PRI or SEC, indicating whether this logical unit comprises a
primary or secondary half session.

DFC STATE=
Is one of the following data flow control states: ACTIVE (the LU has
received an Activate Logical Unit command), or RESET (the LU has not
received an Activate Logical Unit command or has received a Deactivate
Logical Unit command).

LU-LU SESS=
Is either YES or NO, indicating whether or not the logical unit is currently
part of an LU to LU session.

PARTNER=
Is the name of the partner LU with which this LU half-session is in session.
This field is displayed only if LU-LU SESS=YES.

The next two display lines are displayed only if LU-LU SESS=YES and a BIND
command has been successfully processed.

110 WSim Workload Simulator: User's Guide

SEND/RECV MODE=
Is one of the following: FDX (full duplex), HDX,CONTENTION (half
duplex, contention), or HDX,FLIP-FLOP (half duplex, flip-flop).

HDX PROTOCOL=
Is either WINNER or LOSER if the send/receive mode is half duplex,
contention.

HDX PROTOCOL=
Is either SPEAKER, BIDDER, or NO BRKT (no brackets used) if the
send/receive mode is half duplex, flip-flop.

HDX STATE=
Is either SEND (device can send a message), RECV (device can receive a
message), or CONT (device is in contention situation).

TH FORMAT=
Is either FID1, FID2, or FID3.

PRI-TO-SEC=
Is the primary-LU-to-secondary-LU sequence number.

SEC-TO-PRI=
Is the secondary-LU-to-primary-LU sequence number.

Query save and user areas
You can enter a Q (Query) command and specify a save area or a user area. Figure
14 shows the messages when you specify the Q command and a save area or a
user area.

Command entered:
Q NET1,N1+,64

The above example shows a Query request for the first 64 bytes of network N1
save area. The phrase "THIS IS THE START OF THE NETWORK SAVE AREA FOR
THE RESOURCE NET1" was previously saved in NET1's first network save area.
The first portion of each message shows the positive decimal offset into the
specified area. The remaining portion of each message shows up to 16 bytes of
requested save area or user area data, followed by its EBCDIC representation.

Note: The length of save areas is determined by the data saved into them; the
length of user areas is specified in the network definition.

Using service facilities
The service facilities enable you to obtain detailed information about how WSim is
running and about communications with the system under test. The facilities
include a trace of the dispatcher activity and dumps of control blocks.

ITP219I NET1 NETWORK SAVE AREA 1, TOTAL LENGTH 63
ITP220I +0 E3C8C9E2 40CAE240 E3C8C540 E2E3C1D9 THIS IS THE STAR
ITP220I +16 E340D6C6 40E3C8C5 40D5C5E3 E6D6D9D2 T OF THE NETWORK
ITP220I +32 E2C1E5C5 40C1D9C5 C140C6D6 D940E3C8 SAVE AREA FOR TH
ITP220I +48 C540D9C5 E2D6E4D9 C3C540D5 C5E3F1 E RESOURCE NET1

Figure 14. Save area or user area query

Chapter 15. Using operator commands 111

Dispatcher trace
The dispatcher trace is a table containing 32-byte entries that describe the sequence
of activity within WSim. An entry is made in the table every time an element of
work is dispatched to a processing routine, a module obtains a buffer, or a module
frees a buffer.

The dispatcher trace is always active, using a table size of 60K bytes. You can
dump the dispatcher trace table to the printer by entering the T (Trace) operator
command:
T DSP

Dumping control blocks
To solve certain problems, you may need a dump of the control blocks associated
with a particular simulated network. The D (Dump) command enables you to
specify the subset of control blocks dumped for a network. For example, the
command:
D TESTNET,N

dumps the network control block to the printer.

Controlling resources on a network
WSim provides several operator commands to enable you to control and change
the simulated networks dynamically.

Starting and stopping resources
You can use the S (Start Network Resources) command and the P (Stop Network
Resources) command to start and stop activity on the TCPIPs, APPCLUs, and
VTAMAPPLs in any active networks. You can use these commands globally, such
as to stop all of the TCPIPs, APPCLUs, and VTAMAPPLs in a single network (for
example, P TESTNET). By using these commands on specific resources, such as in
stopping a single TCPIP, APPCLU and VTAMAPPL (for example, P010020), you
can control the number of active simulated devices.

The different ways that you can perform SNA session initiation by WSim are
discussed in Creating WSim Scripts.

Resetting a network
After you initialize a network and start the simulation, you can use the R (Reset)
operator command to reset the network to its initial status if you have already
stopped the entire network with a P (Stop Network) operator command. The R
operator command operates on an entire network or all networks but will not
operate on a single resource within a network.

When WSim resets a network, the following functions are performed:
v All sequence and index counters are cleared, except for device sequence

counters, which are reset to their initial values.
v The message generation path for a device is reset to the first path specified for

the device.
v The FRSTTXT deck for a device is marked as the first message generation deck

to be executed.
v All interval report statistics are cleared.

112 WSim Workload Simulator: User's Guide

v All SNA devices are marked as not in session.
v All random number generator seeds are reset to their initial values.
v All RSTATS are cleared.

The R command does not reset network parameters that have been changed by an
A (Alter) command, such as user time interval (UTI) or intermessage delay values.

Changing network parameters
The A (Alter) command enables you to alter the values of network parameters
dynamically. You can use this command to change a parameter for all initialized
networks, for a single initialized network, or for a specific resource in a network.
The following examples show some of the formats of the A command:

A TESTNET,U=10
Sets the network-level UTI to 10 for the network TESTNET.

A I=5 Sets the interval report time to 5 minutes for all networks.

A 010040.TERM1.DEV2,M=A20
Sets the intermessage delay for device DEV2.

A DEV2,PRTSPD=120
Sets the print speed for device DEV2.

A DEV1,5=ABCDEFGHI
Sets the contents of DEV1's save area 5 to the EBCDIC string
'ABCDEFGHI'.

A LUB,PATH=6
Sets message generation for LUB to execute PATH 6 once and then return
to normal path selection.

A TESTNET,PATH=(7)
Sets message generation for all devices in network TESTNET to execute
only PATH 7.

A NSEQ=0
Sets the network sequence counter to 0 for all networks.

Canceling network resources
You can use the C (Cancel) operand command to purge network resources from
WSim without affecting other networks. The C command cancels the execution of
all networks, a single network, or a network resource, then removes the definitions
of the canceled resources from WSim. The entity to be operated on by the C
command can be active or inactive. You must reinitialize the network to reuse a
network or network resource that has been canceled.

Using console recovery
The console recovery feature of WSim allows you to interrupt message generation
processing for a specified device from the operator's console. The device may be
active or inactive when console recovery is entered. The conditions under which a
device is classified as inactive are discussed in WSim User Exits and Creating WSim
Scripts. You can use the F (Console Recovery) command to enter console recovery
mode for a device. For example, the command:
F DEV231

Chapter 15. Using operator commands 113

invokes console recovery for the device named DEV231. While console recovery is
active, WSim provides the WTOR message ITP098E to let you specify
subcommands to generate data for the device.

When you enter console recovery mode, the LOGICAL WAIT indicator is reset,
delays are canceled, event wait conditions are reset, and the INPUT INHIBITED
indicator is reset for a 3270 device. If either of these conditions is the reason that
the device is inactive, then entering and exiting console recovery mode reactivates
the device. The state of a simulated terminal is not automatically reset, however.

Using online response-time statistics
You can use the online Response-Time Statistics feature, RSTATS, to provide online
response-time calculations for terminals simulated by WSim. RSTATS measures the
time it takes to enter a command at the terminal and receive a response from the
system under test.

RSTATS only collects response-time statistics for those simulated resources that
generate messages. These include devices and LUs.

RSTATS output
WSim supports RSTATS for all terminal types. When you activate the RSTATS
option in the network definition, you can obtain the statistics shown in Figure 15
by entering the W (RSTATS) operator command for a particular device:

The statistical measures are defined as follows:

Average This measure gives the running average of all response times
since the statistics were started. This is the statistical mean.

Most Recent This measure is the last response-time value calculated for this
device before you entered the W operator command.

Low This measure is the lowest response time since the statistics
were started.

High This measure is the highest response time since the statistics
were started.

Total Responses This measure is the total number of responses or completed
transactions for this device since the statistics were started.

Note: All response times are given in seconds. If no responses have been
processed, all values will be zero.

You can use two methods to report these statistics: Process System and Process
Actual. Process System measures the time it takes the system under test to return a
response after the command is read. Process Actual measures the response time
that you can see, from the time you press the Enter key until the response is

RESPONSE TIME STATISTICS FOR DEVICE ABC
AT 11.32.45.21
PROCESS SYSTEM PROCESS ACTUAL
AVERAGE 1.23 1.34
MOST RECENT 1.56 1.89
LOW 1.00 1.00
HIGH 2.00 2.00
TOTAL RESPONSES 100 100

Figure 15. Example statistics provided by RSTATS

114 WSim Workload Simulator: User's Guide

written on the panel. Refer to WSim Utilities Guide for a complete description of the
Response Time Utility that defines Process System and Process Actual in greater
detail.

In most cases, the results from RSTATS should closely resemble the results from
the Response Time Utility because RSTATS processes the same LOG control block
immediately after it is written to the log data set. Like the Response Time Utility,
RSTAT processes every transmit and receive record. However, when you use
RSTATS, you cannot define logical transaction processing (BTRANS and ETRANS).
In addition, certain messages are discarded for 3270 and LU7 devices.

Because RSTATS calculates response times during operation, some of the more
complex processing available when you use the Response Time Utility is
unavailable.

The RSTATS operand
To enable the response-time feature for a particular device, code the following in
the network definition:
RSTATS=YES

You can code RSTATS=YES on DEV or LU statements. You can also code it on
higher-level statements and allow it to default to lower-level statements.

RSTATS=YES specifies that response statistics will be accumulated and reported
when you enter the W operator command for the device.

RSTATS=NO specifies that no response statistics will be kept for this device.

If you specify RSTATS=NO for a device in the network definition, you cannot
activate RSTATS for that device at any time during the simulation. This is due to
the storage allocation necessary at initialization time.

Resetting response statistics
You can use the following A (Alter) operator command at any point during
operation to reset the response-time statistics:
A { name},RSTATS

where name is any specification operand for the command.

This command causes all fields in the response-time control blocks to be instantly
set to zero, which is the initial state before the network is started. This prevents
previous statistics from biasing future figures and can be especially useful when
you adjust UTI values or dynamically change test system parameters during the
run.

Response-time statistics are also reset when you enter the R (Reset) operator
command.

Routing messages
The following sections discuss how you can route messages to the console and to
the log data set.

Chapter 15. Using operator commands 115

Routing messages to consoles
Two kinds of messages appear at the console during a WSim run: write-to-operator
(WTO) messages that come directly from WSim and system messages. The routing
of WTO messages depends on which command interface, MODIFY or WTOR, is in
use and whether you specified the ROUTCDE execution parameter (MVS only).

See WSim Messages and Codes for details about system messages and codes.

Routing console messages with MODIFY
One advantage of the MODIFY command interface is that WSim routes responses
to operator commands only to the console from which you entered the request
using the full four-byte extended console ID and preserving the command and
response token (CART), if any, supplied with the command. WSim routes
responses to operator commands entered with the OPCMND statement to the
console from which you initialized the network.

Note: If you are operating WSim under MVS and you specify the ROUTCDE
execution parameter, you override the MODIFY routing mechanism. In this case,
WSim routes messages as if you were not using the MODIFY interface.

Routing console messages without MODIFY
For systems with multiple console support (MCS), WSim routes all messages to the
consoles that specify the proper routing code. The default ROUTCDE value is 8,
but you can change the value with the ROUTCDE execution parameter. For
systems without MCS, the master console receives the messages. All console
messages have description codes that indicate whether or not action is required on
the message. In addition, all messages contain message numbers so you can find
out the meaning of the message. For a description of these messages, refer to WSim
Messages and Codes.

Routing messages to log data sets
WSim writes all messages normally written to the operator console, other than
message numbers ITP001E and ITP0301, to the appropriate log data set, assuming
the log data set is ready. If you are using the NTWRKLOG data set for a network,
WSim logs console messages associated with that network to that data set.
Otherwise, WSim logs all console messages to the general log data set.

WSim associates the following messages with a particular network and logs them
to the NTWRKLOG data set:
v CNSL messages resulting from message generation script WTO
v Comments about the state of a network.

WSim can also generate messages as a result of commands issued using the
OPCMND statement in a message generation deck. WSim logs these messages to
the general log data set. You can monitor these messages at the operator console.

116 WSim Workload Simulator: User's Guide

Chapter 16. Using operator reports

This chapter describes the types of operator reports WSim generates:
v Interval Report
v End of Run Report
v Inactivity Reports.

Using interval reports
The interval reports provided by WSim report the activity and status of networks
and network resources. Each interval report prints at the interval time you specify
with the ITIME operand on the NTWRK statement. For each report, WSim
accumulates network and resource statistics until you cancel the network or WSim
completes an R (Reset) operator command.

The Interval Report is an online printout of network activity and status that
provides information about each resource in the network. However, you may
specify condensed forms of the report by using the REPORT operand on the
NTWRK statement or the X operand on the A (Alter) operator command.

The Interval Report includes the following information for each resource in the
network:
v Network name
v Network header
v Network-level user time interval value (NTWRK UTI)
v APPCLU and TP names
v VTAMAPPL and LU names
v TCP/IP connection and DEV names
v Current® resource status:

A Active
C Canceled
I Inactive
P Stopped
Q Quiesced
R Ready
S Started
T Terminated
W Wait indicator on.
Status for an LU in a simulated subarea is not printed until the LU is in an SNA
session.

v Number of messages (complete transactions) sent from each terminal or device
(maximum of 99,999 displayed). For CPI-C transaction programs, this is the total
number of send verbs issued for which data is sent to the partner application,
plus the number of send error verbs issued for which log data is sent to the
partner application, plus the number of attach requests sent using the allocate
verb.

117

v Number of messages (complete transactions) received by each terminal or device
displayed (maximum of 99,999 displayed). For CPI-C transaction programs, this
is the total number of receive verbs issued for which data is received from the
partner application, plus the number of attach requests received using the accept
verb (at most one per TP instance).

v Number of SNA responses sent and received (maximum of 99,999 displayed):
– CPI-C simulation not applicable.
– VTAMAPPL LUs: the number of definite and exception responses sent and

received.
v Totals of all statistics for each APPCLU
v Totals of all statistics for each VTAMAPPL
v Totals of all statistics for each TCP/IP connection
v Totals of all statistics for the entire network
v Totals of all statistics for the entire network for the last reporting interval only

(not cumulative)
v Rates per minute of each statistic computed for the last reporting interval only

(not cumulative).

Note: Excessive monitor output may interfere with rate-per-minute calculations on
the Interval Report.

Figure 16 shows an example of the Interval Report.

Note: For CPI-C transaction programs with multiple instances, a total line reports
the totals for all instances of the transaction program. The range of instances
appears parenthetically on the totals line. For example, the (1:3) on the TP totals
line indicates that the totals represent TP instance 1 through TP instance 3. If you
code TPSTATS=NO, or take the default, WSim does not maintain individual
statistics for terminated TP instances. In this case, only active instances have an
individual statistics line on the interval report. However, the TP totals line reflects
totals for all simulated instances.

INTERVAL REPORT
NETWORK WSIMNET1 Sample WSim Network NTWRKUTI 100

STATUS MESSAGES RESPONSES
RECEIVED SENT RECEIVED SENT

DEF EXC DEF EXC
APPCLU APPCLUS S

TP TPSERVER-1 T 2 1 0 0 0 0
TP TOTALS (1:5) 10 0 0

5 0 0
APPCLU TOTALS 10 0 0

5 0 0
APPCLU APPCLUC S

TP TPCLIENT-1 A W 5 10 0 0 0 0
APPCLU TOTALS 5 0 0

10 0 0
VTAMAPPL VA1 S

LU LULU2-1 A W 9 7 1 0 3 0
VTAMAPPL TOTALS 9 1 3

7 0 0
TCP/IP TCPIP1 S

DEV DEVTN32E A 11 7 0 0 0 0
DEV DEVSTCP A W 5 5 0 0 0 0

TCP/IP TOTALS 16 0 0
12 0 0

CUMULATIVE TOTALS 40 1 3
34 0 0

INTERVAL TOTALS 16 0 0
12 0 0

RATE (PER MINUTE) 16 0 0
12 0 0

Figure 16. Interval report

118 WSim Workload Simulator: User's Guide

Using end of run reports
The End of Run Report is an interval report that provides you with summary data
for the simulated network. It prints automatically at the end of each run when the
network is canceled. The format is the same as that for the Interval Report. Figure
17 shows an example of the End of Run Report.

Note: For CPI-C transaction programs with multiple instances, a total line reports
the totals for all instances of the transaction program. The range of instances
appears parenthetically on the totals line. For example, the (1:3) on the TP totals
line indicates that the totals represent TP instance 1 through TP instance 3. If you
code TPSTATS=NO, or take the default, WSim does not maintain individual
statistics for terminated TP instances. In this case, only active instances have an
individual statistics line on the interval report. However, the TP totals line reflects
totals for all simulated instances.

Using inactivity reports
The inactivity reports contain information about the status of terminals and devices
in the network. To receive these reports, you must code the SCAN operand on the
NTWRK statement or use the S operand of the A (Alter) command. These
operands must specify a time interval between reports that is greater than zero.
The criteria for an inactive terminal are discussed in Creating WSim Scripts. Note
that simulated CPI-C TP instances are never considered inactive in this sense and
therefore never appear on inactivity reports.

For each inactive resource in the network, the Inactivity Report contains the
following information:
v Whether the device was last transmitting or receiving (T/R=)
v Message generation deck name, if any (ACTIVE DECK=)
v Time of the last message transmitted
v Time of the last message received
v Last message transmitted
v Last message received.

END OF RUN REPORT
NETWORK WSIMNET1 Sample WSim Network NTWRKUTI 100

STATUS MESSAGES RESPONSES
RECEIVED SENT RECEIVED SENT

DEF EXC DEF EXC
APPCLU APPCLUS

TP TPSERVER-1 2 1 0 0 0 0
TP TOTALS (1:5) 10 0 0

5 0 0
APPCLU TOTALS 10 0 0

5 0 0
APPCLU APPCLUC

TP TPCLIENT-1 5 10 0 0 0 0
APPCLU TOTALS 5 0 0

10 0 0
VTAMAPPL VA1

LU LULU2-1 9 7 1 0 3 0
VTAMAPPL TOTALS 9 1 3

7 0 0
TCP/IP TCPIP1

DEV DEVTN32E 13 7 0 0 0 0
DEV DEVSTCP 5 5 0 0 0 0

TCP/IP TOTALS 18 0 0
12 0 0

CUMULATIVE TOTALS 42 1 3
34 0 0

Figure 17. End of Run Report

Chapter 16. Using operator reports 119

All or parts of the last messages transmitted and received by the terminal are
printed in EBCDIC and hexadecimal notation. The maximum amount of data
printed is determined by the value of the CRDATALN operand for this terminal. If
the CRDATALN operand is not coded, 20 bytes of data are printed.

The Inactivity Report has a time stamp so that you can determine the length of
time a terminal has been inactive. If no terminals or devices are inactive, the report
contains the network name and the title INACTIVITY REPORT followed by the
lines ALL TERMINALS ACTIVE and END OF REPORT. Figure 18 shows an
example of the Inactivity Report.

NETWORK SAMPNET INACTIVITY REPORT
VTAMAPPL=APPL1 LU=PLU1-1 T/R=T ACTIVE DECK=PLUDECK

LAST TRANSMITTED TIME 9.08.43.60
00000000 F1C3 *1C *

LAST RECEIVED TIME 9.08.43.10
00000000 7DC4D811 407DD4C5 E2E2C1C7 C540D5E4 D4C2C5D9 40F0F0F5 40C6D9D6 D440C4C5 *’DQ. ’MESSAGE NUMBER 005 FROM DE*
00000020 E5F1C140 C1C2C3C4 C5C6C7C8 C9D1 *V1A ABCDEFGHIJ *

--
VTAMAPPL=APPL1 LU=PLU1-2 T/R=T ACTIVE DECK=PLUDECK

LAST TRANSMITTED TIME 9.08.43.62
00000000 F1C3 *1C *

LAST RECEIVED TIME 9.08.43.11
00000000 7DC4D811 407DD4C5 E2E2C1C7 C540D5E4 D4C2C5D9 40F0F0F5 40C6D9D6 D440C4C5 *’DQ. ’MESSAGE NUMBER 005 FROM DE*
00000020 E5F1C240 C1C2C3C4 C5C6C7C8 C9D1 *V1B ABCDEFGHIJ *

--
TCPIP=TCONN1 DEVICE=DEV11 T/R=R ACTIVE DECK=WAITREDY

LAST TRANSMITTED TIME 9.08.44.01
00000000 7D5BF011 D840C5D9 C9C3C811 D950C6F0 F0E3C2C1 *’$0.Q ERICH.R&F00TBA *

LAST RECEIVED TIME 9.08.45.99
00000000 F1C2115B 5F1DC111 5D6B1D60 C8D6D3C4 C9D5C740 *1B.$-.A.),.-HOLDING *

--
LINE=010033 TERMINAL=TERM1 DEVICE=DEV1A T/R=T ACTIVE DECK=SLUDECK

LAST TRANSMITTED TIME 9.08.46.37
00000000 7DC4D811 407DD4C5 E2E2C1C7 C540D5E4 D4C2C5D9 40F0F0F5 40C6D9D6 D440C4C5 *’DQ. ’MESSAGE NUMBER 005 FROM DE*
00000020 E5F1C140 C1C2C3C4 C5C6C7C8 C9D1 *V1A ABCDEFGHIJ *

LAST RECEIVED TIME 9.08.46.35
00000000 F1C3 *1C *
--
LINE=010033 TERMINAL=TERM1 DEVICE=DEV1B T/R=T ACTIVE DECK=SLUDECK

LAST TRANSMITTED TIME 9.08.46.58
00000000 7DC4D811 407DD4C5 E2E2C1C7 C540D5E4 D4C2C5D9 40F0F0F5 40C6D9D6 D440C4C5 *’DQ. ’MESSAGE NUMBER 005 FROM DE*
00000020 E5F1C240 C1C2C3C4 C5C6C7C8 C9D1 *V1B ABCDEFGHIJ *

LAST RECEIVED TIME 9.08.46.56
00000000 F1C3 *1C *
--
END OF REPORT

Figure 18. Inactivity Report

120 WSim Workload Simulator: User's Guide

Chapter 17. Controlling message logging

The message logging facility is an important tool to use for debugging message
generation decks and network definition statements. This chapter describes how to
control message logging using operator commands. For information about
controlling message logging using network definition statements, refer to Creating
WSim Scripts. For information about understanding and formatting the log data set,
refer to WSim Utilities Guide.

What is message logging?
The message logging facility, when active, writes messages to the log data set
containing all data that simulated resources transmit or receive in a specified
network. Most users use the message logging facility because of its usefulness for
analyzing network simulations.

You define the name of the data sets that will be used for message logging in the
LOGDD DD or FILEDEF statements when you run WSim. By default, the message
logging facility is active for the entire network. You can override the default in
your network definition for the entire network by specifying MLOG=NO on the
NTWRK statement, or you can override the network definition for a single TCP/IP
connection by using the MLOG operand on the TCPIP statement. You can also use
both the NTWRK and TCPIP statements.

Furthermore, you can code the NTWRKLOG statement in the network definition to
specify the log data set for this network. In this way, you can run multiple
networks simultaneously and collect log data for each network in a separate data
set.

By inspecting the printed records in the log data set after a simulation run, you
can gain information about the behavior of your teleprocessing network. For
example, you can determine whether or not new application programs operated
correctly. You can also obtain an estimate of your system's performance by using
the time stamps in each record to compute the response times between the
messages transmitted and received by the simulated terminals.

Refer to WSim Utilities Guide for a discussion of message logging, time stamps, and
the utility programs that provide offline analysis of the log data set.

Logging messages
This section discusses the facilities that control message logging in MVS. Because
WSim also allows you to specify separate logging machines for each network
(network log data set), this section also contains a discussion of the NTWRKLOG
data set. If you have defined the message logging facility for your network, you
can use LOGDD DD statement parameters in the JCL you use to run WSim to
control the writing of messages on a tape or in a DASD data set.

For tapes, use the VOLUME parameter to specify that WSim use multiple tape
volumes for the log data set. If you specify multiple volumes in this way, WSim
automatically requests that a new tape volume be mounted when the previous
volume is full. For example, the following DD statement specifies that a maximum
of four tape volumes be used for the log data set:

121

//LOGDD DD DSN=WSIM.MSGLOG,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=(,,,4,SER=(00001,00002,00003,00004)),
// LABEL=(,BLP)

To change tapes, use the E (Restart Message Logging) operator command to cause
WSim to force an end-of-volume condition on the current log tape volume. After
unloading the tape, you can mount the next volume according to the requirements
of your operating system. If you do not specify multiple volumes on the LOGDD
statement, the tape rewinds and message logging resumes. Previous data will be
lost.

The following DD statement defines the log data set for a DASD:
//LOGDD DD DSN=WSIM.MSGLOG,DISP=(NEW,KEEP),UNIT=3380,
// VOL=SER=YOURPK,SPACE=(CYL,(1,1))

When logging to disk on MVS, the E command causes an error condition that
results in logging being stopped, but logging is immediately restarted. Message
logging continues as usual, but messages logged prior to the E command are lost
unless you give the log data set a DISP=MOD indication in the JCL.

For more information about restarting message logging, see “Restarting message
logging” on page 123.

WSim maintains, by default, five buffers of 8192 bytes each for writing messages to
the log tape or data set. For networks that achieve high message transfer rates or
operate with unusually large messages, the default buffers may not be sufficient to
contain all the data to be logged while waiting on an I/O operation to the log data
set. In this situation, the system loses data and writes message ITP030I to the
operator console. To increase the size and number of message logging buffers, you
can specify the BLKSIZE and NCP subparameters of the DCB parameter. Use
BLKSIZE to specify the maximum length of each buffer in bytes. Use NCP
(Number of Channel Programs) to specify the number of buffers.

In the following example, the DD statement specifies that WSim allocate five
buffers of 23476 bytes each for logging messages:
//LOGDD DD DSN=WSIM.MSGLOG,DISP=(NEW,KEEP),UNIT=TAPE,
// LABEL=(,BLP),VOLUME=SER=00001,
// DCB=(BLKSIZE=23476,NCP=5)

Note: For specific details about coding the VOLUME and DCB DD statement
parameters, refer to the appropriate JCL reference manual for your operating
system.

You can also specify NCP as an execution parameter; however, any LOGDD DD
statement NCP value overrides the execution parameter value.

Inhibiting the logging of console messages
Normally, WSim writes all console messages (ITP001E - ITP399I) and all log data
messages (ITP400I - ITP499I) to a log data set. The Loglist Utility identifies console
messages as CNSL records; log data messages are identified as INFO, STRC, MTRC
or CTRC records. Refer to WSim Utilities Guide for information about running the
Loglist Utility.

122 WSim Workload Simulator: User's Guide

You may want to inhibit the display and logging of some of these messages. To
inhibit these messages, use the INHBTMSG operand on the NTWRK statement, the
MSGn= operand of the A (Alter) operator command, or both.

Because the INHBTMSG operand must be coded within the network definition,
you must know which message or messages you want to inhibit prior to the WSim
run. To inhibit a message during the run, you can use the A (Alter) operator
command.

For more information about defining the configuration of the simulated network
and inhibiting messages with the INHBTMSG operand, refer to Creating WSim
Scripts and the WSim Script Guide and Reference.

The following example shows how you can use the A (Alter) operator command to
inhibit the display and logging of message ITP137I for network NETA:
A NETA,MSG137=OFF

You can use the A (Alter) operator command to change the status of an inhibited
message to one that is not inhibited so that subsequent issuances of the message
will be displayed and logged.

In the following example, the A (Alter) operator command causes WSim to display
and log message ITP137I until the end of the simulation run or until you inhibit it
again using the A (Alter) operator command.
A NETA,MSG137=ON

For more information about inhibiting messages using the A (Alter) operator
command, refer to “Using operator commands” on page 138.

Restarting message logging
The E (Restart Message Logging) operator command gives you control over the
message logging and network logging facilities. You can specify a network name
operand with the E operator command to restart message logging for the
associated NTWRKLOG data set. If you do not specify a network name, WSim
restarts message logging for the general log data set. For more information about
coding the ntwrk operand on the E operator command, refer to “Using operator
commands” on page 138.

When you log messages on a tape on MVS and specify on the LOGDD DD
statement that the log tape has multiple volumes, you can use the E operator
command to force an end-of-volume condition on the currently mounted tape
while message logging is active. The tape will be unloaded and you can then
mount the next volume.

When logging to disk on MVS, the E command causes an error condition that
results in logging being stopped, but logging is immediately restarted. Message
logging continues as usual, but messages logged prior to the E command are lost
unless you give the log data set a DISP=MOD indication in the JCL.

When an I/O error occurs on the log data set, WSim suspends message logging
and notifies the operator with message ITP048I. You can use the E command to
attempt a restart of the message logging facility by reopening the DCB associated
with the log data set.

Chapter 17. Controlling message logging 123

124 WSim Workload Simulator: User's Guide

Chapter 18. Using the Display Monitor Facility

The Display Monitor Facility allows you to see screen images or data streams from
simulated devices on a real 3270 display. It is a VTAM application program that is
part of WSim.

You can use the Display Monitor Facility in two different ways: to see the screen
images of a simulated device (3270 only) or to watch the data streams that a
simulated device sends and receives (all devices). Both of these help you develop
and debug tests for your simulated devices. In addition, you can use the Display
Monitor Facility to show interactions with host applications for user education or
product demonstrations.

VTAM Version 3 Release 1 and any subsequent releases of VTAM support the
Display Monitor Facility. It runs under MVS. The facility is activated when you
start WSim with the DMAPPL execution parameter specified. Refer to “Using
WSim execution parameters” on page 95 for a description of the WSim execution
parameters. The DMAPPL parameter value specifies the name of the APPL defined
to VTAM to be used by the Display Monitor Facility. The following example shows
how to code the APPL in VTAMLST:
DISPMON APPL AUTH=ACQ

You may start monitoring simulated devices by either:
v Entering the M (Monitor) operator command
v Logging onto the Display Monitor Facility (DMAPPL value) and responding to a

selection panel.

For information on how to define an APPL resource to VTAM, refer to VTAM
Network Implementation Guide.

Using the Display Monitor Facility
You may go through several stages of debugging when you code the network
definition statements and create the message generation decks. The Display
Monitor Facility helps speed up this process by helping you debug your scripts.

Debugging scripts
Even if you use one of the script generating utilities (refer to WSim Utilities Guide
for more information), you may need to modify your message generation decks.
The Display Monitor Facility monitors a device as it goes through a script and
helps show errors at run time that otherwise you could detect only if you ran the
Loglist Utility after completing the simulation. The Display Monitor Facility can
help you detect the following types of errors:

Invalid cursor position
By inserting the MONITOR statement into problem areas of your message
generation decks and viewing the screen images during a run, you can
detect problems related to cursor position. The cursor may be positioned in
a protected field or the wrong input field. Using the MONITOR statement
lets you keep the screen active on the monitoring display so that you can
investigate the problem.

125

Format of the screen image
A monitoring display shows you what your panel looks like at any given
time. Using LOGDSPLY and running the Loglist Utility has the same
result, but it also requires you to stop WSim and run the Loglist Utility.
With the Display Monitor Facility, you can detect this error during run
time, correct it, and run WSim again, eliminating a step when you debug
your script.

Hung devices
When you use the Display Monitor Facility with VIEW=SCREEN,
UPDATE=XMITRECV, and SOURCE=BLOCKS specified, the monitoring
display shows the last screen image transmitted or received. This may help
you to determine why the device is no longer sending data.

Data flow errors
By using the Display Monitor Facility with VIEW=DATA specified, you can
view the transmitted and received data streams for the simulated device.
This can help you determine data flow errors.

Monitoring scripts
When your scripts are in working order and are actually performing your test, you
can use the Display Monitor Facility to show the current activity of any resource in
your simulated network. If you do not use the Display Monitor Facility during a
run, you will have to use one of the following procedures:
v Issue Q (Query) operator commands to see what was last transmitted or

received, and how far into the script it progressed.
v Insert statements into your scripts to write messages (WTOs) to the operator

about the progress of the run.

By monitoring the resources during a run with the Display Monitor Facility, the
operator console is not cluttered with WTO messages or query responses.

Starting the Display Monitor Facility
The following sections describe starting the Display Monitor Facility with the M
operator command and logging on to the Display Monitor Facility.

Using the M operator command
When you start monitoring with the M (Monitor) operator command, the Display
Monitor Facility establishes an SNA session with the monitor display. Refer
to“M-Display monitor facility” on page 152 for information about the syntax of the
M operator command. All data received from the monitoring display is ignored
except for information to change the bracket state when Begin Bracket and Change
Direction are received. The session remains active until you enter another M
operator command to stop monitoring a simulated resource.

Logging on to the Display Monitor Facility
When you log on to the Display Monitor Facility, the Display Monitor Facility
establishes an SNA session with the monitor device and displays a selection panel
menu. If you specified the DMUSERPW execution parameter when starting WSim,
you are prompted for a password before establishing the SNA session with the
monitor display.

After you enter the password, the selection panel menu is displayed. You specify
the name of the simulated resource to be monitored and the monitor parameters

126 WSim Workload Simulator: User's Guide

using the selection panel. After you start monitoring, you can enter PA1 or SNA
Signal (ATTN key) to stop monitoring the simulated resource and return to the
selection panel. The session remains active until you press the PF3 or PF15 key
from the selection panel.

Figure 19 shows the layout of the selection panel.

Viewing screen images
To view screen images of a simulated 3270 display, specify the following monitor
operands using the M operator command or the selection panel:
v NAME
v VIEW
v UPDATE
v SOURCE
v TIMER
v AID.

Specifying NAME
The NAME operand specifies the name of the simulated device. For the NAME
operand, enter the 1- to 8-character name as specified in the network definition, or
the NTWRK name followed by ". " followed by the name of the resource as
specified in the network.

Specifying VIEW
Specify VIEW=SCREEN to have the monitoring display show the screen images of
the simulated 3270 display. You cannot specify VIEW=SCREEN to monitor a
non-3270 device. However, VIEW=DATA will be automatically selected when you
monitor a simulated non-3270 device.

WSim Version 1 Release 1.0.0 Display Monitor Facility
Name = WSim name of simulated device or 3270 display
View = SCREEN DATA or SCREEN - show data stream or screen image
Screen image display only:
Update = XMITRECV Monitoring display updated when:

MONITOR - MONITOR statement is executed from script,
TIMER - the specified time value expires, or
XMITRECV - data is transmitted/received by display.

Source = BLOCKS Data stream sent to the monitoring display built from:
BLOCKS - internal control blocks
DATA - data transmitted/received by display.

Timer = 10 1-600 Seconds when Update = TIMER
Aid = ON ON, OFF, or (row,column) location of AID display field

Data stream display only:
Lines = 2 Maximum number of displayed data lines
Code = EBCDIC ASCII or EBCDIC - interpret data as ASCII or EBCDIC

ENTER - Submits parameters to start monitoring of simulated display.
PA1/ATTN - Stops monitoring of simulated display.
PF3/PF15 - Ends Display Monitor Facility session.

Figure 19. Display Monitor Facility selection panel

Chapter 18. Using the Display Monitor Facility 127

Specifying UPDATE
The UPDATE operand specifies when the monitoring display is to be updated.

Specify UPDATE=MONITOR to have the monitoring display updated each time a
MONITOR statement is executed during the message generation process for the
monitored 3270 display. You must specify SOURCE=BLOCKS when you specify
UPDATE=MONITOR.

Specify UPDATE=XMITRECV to have the monitoring display updated each time
data is transmitted or received by the simulated 3270 display being monitored. You
can specify SOURCE=BLOCKS or SOURCE=DATA with UPDATE=XMITRECV.

Specify UPDATE=TIMER to have the monitoring display updated each time the
predefined timer value expires. You must specify SOURCE=BLOCKS with
UPDATE=TIMER.

Specifying SOURCE
The SOURCE operand specifies the source used for building the data stream sent
to the monitoring display.

Specify SOURCE=BLOCKS to truncate the display image (if necessary) to fit the
current display. For example, suppose you are simulating an LU2 defined as a 32
by 132 display. If your display monitor terminal is 24 by 80, coding
SOURCE=BLOCKS allows you to see rows 1 to 24 and columns 1 to 80 of the 32
by 132 display image.

Note: When you specify SOURCE=BLOCKS, the following occurs:
v Programmed symbols are not shown on the display monitor screen image.

However, extended field and character attributes for color and highlighting are
shown on the monitoring display.

v Double-byte character set (DBCS) data is displayed when both the simulated and
monitor displays support DBCS and have the same screen sizes.

v Field outlining attributes are displayed when the monitor display supports field
outlining.

v DBCS data is displayed on a non-DBCS monitor display as single-byte character
set data with SO and SI characters shown as < and > respectively.

Specify SOURCE=DATA to not truncate the display image to fit the current
display. As a result, attempting to display a simulated 32 by 132 display device's
image on a display monitor device defined as a 24 by 80 display may result in an
error.

Notes:

1. When you specify SOURCE=DATA, your display image is not updated to show
the results of the following:
v An erase input (ERIN) statement is issued by the simulated display.
v An erase end of field (EREOF) statement is issued by the simulated display.
v The location of data entered during the message generation process by the

simulated display that is preceded by nulls that are suppressed when the
message is sent to the host application. The location of the data on the
monitor screen is shifted left and overlays the suppressed nulls.

v Data streams rejected by the simulated display are not passed to the monitor
display.

128 WSim Workload Simulator: User's Guide

2. When you specify SOURCE=DATA and the simulated display has DBCS=YES
specified in the network definition and the monitor display also supports 3270
DBCS data streams, the monitor display may reject data streams for one of the
following reasons:
v The host application program created a DBCS subfield with imbedded nulls

that are suppressed if the DBCS subfield is sent back to the host application.
In this case, an SI character is not paired with an SO character on the
monitor display.

v Suppressed nulls cause the data sent to the host application program to be
shifted left and cause a DBCS character to be split on the monitor display.

If this problem occurs with SOURCE=DATA, use SOURCE=BLOCKS to avoid this
situation. As a general rule, use SOURCE=BLOCKS when monitoring simulated
3270 DBCS displays.

Specifying TIMER
The TIMER operand specifies a timer value in seconds to be used when you
specify UPDATE=TIMER.

Specifying AID
The AID operand specifies whether or not the attention identifier (AID) value
generated by the simulated 3270 display is displayed on the monitoring display
panel when UPDATE=XMITRECV is specified.

Specify AID=ON to display the AID value on the monitoring display panel in
yellow in the lower right corner. Specify AID=OFF to not display the AID value.

Specify AID=(row, column) to display the AID value on the monitoring display
panel in yellow at the specified row and column. You can enter integers from 1 to
255 for the row and column values. If you enter row and column values that cause
the AID display field to be displayed on more than one row or to be displayed
outside the monitor display panel, the AID display field is moved to the nearest
monitoring display panel location.

Note: The AID display area is not shown when the simulated device supports
double-byte character set data and when you specify SOURCE=DATA.

Viewing the data stream
To view transmitted and received data streams for a simulated resource, specify
the NAME, VIEW, and LINES operands using the M operator command or the
selection panel.

Specifying NAME
The NAME operand specifies the name of the simulated device. For the NAME
operand, enter the 1- to 8-character name as specified in the network definition, or
the NTWRK name followed by a period (.), followed by the name of the resource
as specified in the network.

Specifying VIEW and LINES
Specify VIEW=DATA to have the monitoring display show the transmitted and
received data streams for the simulated device. If you are monitoring a non-3270
display device, VIEW=DATA will be used even if VIEW=SCREEN is specified.

Chapter 18. Using the Display Monitor Facility 129

The LINES operand specifies the number of lines shown each time the monitored
device transmits or receives data. You can enter a value from 1 to 99 for the LINES
operand. If you enter a value greater than the number of rows on the monitoring
display, the maximum number available is used. For SNA devices, the minimum
number of lines used is two because one of the LINES specified is used for SNA
formatting.

Specifying CODE
The CODE operand specifies whether the monitored data is to be displayed in
ASCII or EBCDIC. EBCDIC is the default.

Interpreting the Display Monitor Facility data stream display
When you view the data stream, the monitoring display shows the transmitted and
received data streams for the simulated device. The number of rows on your
screen determine how many rows of data are displayed. Your display screen size
must be at least 24 rows by 80 columns to view data streams.

An example of this display is shown in Figure 20.

The following fields are shown on this panel:

NAME The name of the simulated device being monitored.
TYPE The type of the simulated device (sometimes abbreviated).
STATUS The status of the simulated device, as indicated in the following list:

NAME=DEVTN32E TYPE=TN3E STATUS=A W DECK=ITPECHO WSim=00028
R: 14:48:09.00 00000100 04F1C311 D1601311 40403C4E *.....1C.J-.. .+*

7F001140 40124040 C8859393 9640C9E3 *".. . Hello IT*
X: 14:48:10.00 00000000 007DD16F 11D160C8 85939396 *.....’J?.J-Hello*

40C9E3D7 C5C3C8D6 40F4 * ITPECHO 4 *
R: 14:48:10.00 00000100 05F1C311 D1601311 40403C4E *.....1C.J-.. .+*

7F001140 40124040 C8859393 9640C9E3 *".. . Hello IT*
X: 14:48:11.01 00000000 007DD16F 11D160C8 85939396 *.....’J?.J-Hello*

40C9E3D7 C5C3C8D6 40F5 * ITPECHO 5 *
R: 14:48:11.01 00000000 06F1C311 D1601311 40403C4E *.....1C.J-.. .+*

7F001140 40124040 C8859393 9640C9E3 *".. . Hello IT*
X: 14:48:12.04 00000000 007DD1E6 11D16093 96879686 *.....’JW.J-logof*

86 *f *
R: 14:48:12.04 04000000 0001 *...... *
R: 14:48:42.04 03000000 00310103 03919030 80008487 *.........j....dg*

F8800002 80000000 00185000 007E0000 *8.........&..=..*
R: 14:48:42.30 00000000 00F5C211 40401DE4 C595A385 *.....5B. .UEnte*

9940E896 A49940E4 A2859989 847A1DC4 *r Your Userid:.D*

7F001140 40124040 C8859393 9640C9E3 *".. . Hello IT*
X: 14:48:08.94 00000000 007DD16F 11D160C8 85939396 *.....’J?.J-Hello*

40C9E3D7 C5C3C8D6 40F3 *ITPECHO 3 *
PA1/ATTN=Return to main panel ENTER=Hold/Resume

Figure 20. Display Monitor Facility data stream display

130 WSim Workload Simulator: User's Guide

N The network is not active.

A The device is active.

L The device is in an LU-LU session.

W Wait indicator is set for the device.

E Event wait indicator is set for the device.

Q Quiesce indicator is set for the device.

K Input is inhibited for the device.

R The transaction program is ready.

T The transaction program is terminated.
DECK The name of the message generation deck or STL procedure that the

device is currently executing.
WSIM The message generation deck statement number that the device will

execute next.
STL The STL program statement number (if applicable) that the device will

execute next. If there is no STL program being run for this simulation, this
field is not displayed.

Interpreting data stream messages
Transmitted and received messages are tagged with X (for transmitted messages)
and R (for received messages). All messages contain a time stamp indicating when
the message was transmitted or received. If your monitor display supports color,
these messages are also distinguished by the following colors:

White Transmit requests.

Turquoise Transmit responses.

Green Receive requests.

Pink Receive responses.

Request unit (RU) data is shown in dump format, four 4-byte sets of data with a
blank between the sets. A total of 16 bytes of data per line, with translation, is
shown. 32 bytes of data per line with translation are shown if your monitor
display screen size accommodates it.

Request header (RH) data is displayed before RU data. SNA data streams are
formatted, if possible. If an SNA data stream is not defined, the string
UNRECOGNIZED is displayed. Sense codes are also formatted, if possible. For
non-SNA data streams, no headers appear.

A line of dashes on the monitor display appears below the last message
transmitted or received. As messages are displayed, this line moves down the
monitoring display and wraps to the top of the display.

Note: During heavy message traffic, you may see a red (if your display supports
color) line with the message FLUSHED in the middle of a line of equal signs. This
means that the simulated device is sending and receiving data faster than the
monitor can display the data. When this occurs, the Display Monitor Facility loses
messages. (You can use the Loglist Utility to see the lost messages.) You can control
the message rate of simulated devices by changing the DELAY and UTI values.

Chapter 18. Using the Display Monitor Facility 131

Controlling the Display Monitor Facility data stream display
You can temporarily suspend and resume monitoring the data stream by pressing
Enter.

Pressing Enter once suspends monitoring the data stream and a red (if your
display supports color) line with the message HOLDING replaces the line of
dashes. No data stream messages are shown until you resume monitoring.

Pressing Enter again resumes monitoring the data stream and a yellow (if your
display supports color) line with the message RESUMED replaces the red line.
Data stream messages are again shown.

Pressing Clear clears the screen and resumes monitoring at the beginning of the
data display area. Pressing Clear also resumes monitoring if the terminal is in a
HOLDING state.

Note: All data streams between the time you press Enter to suspend monitoring
and the time you press Enter to resume monitoring are lost.

To return to the Display Monitor Facility Selection Panel, press PA1 or ATTN.

Specifying BIND profiles
The Display Monitor Facility supports LU Type 0 and LU Type 2 BIND images.
Non-SNA 3270 monitor displays use LU Type 0 BIND images and SNA 3270
monitor displays use LU Type 2 BIND images. Other BIND images received during
the logon process are turned into valid LU Type 2 BIND images before being sent
to the monitoring display.

The BIND image always has one of the following profile fields set into bytes 2
through 7:

LU Type 0 X'020271402000'

LU Type 2 X'0303B1903080'

The monitor display panel size is defined as follows. When VIEW=DATA or
VIEW=SCREEN and SOURCE=BLOCKS are specified, the display size fields in the
Query Reply are used, if they are available. Otherwise, the display size fields in
the BIND image are used.

When VIEW=SCREEN and SOURCE=DATA are specified, the simulated 3270
display panel size is used.

Chaining to support max RU size when VIEW=SCREEN and
SOURCE=DATA

The Display Monitor Facility supports SNA chaining to the monitor display in two
ways. First, when the monitor display does not support chaining, the Display
Monitor Facility saves the simulated 3270 data as required until an end-of-chain is
reached. The data is then sent to the monitor display as an only-in-chain RU
truncated to the Max RU Size. When the monitor display supports chaining, the
Display Monitor Facility reformats the data as required by the Max RU Size value
in the BIND image.

132 WSim Workload Simulator: User's Guide

Chapter 19. Isolating problems

WSim often operates in a complex environment that includes a large physical
configuration and many system software components. As a result, you cannot
always isolate a problem encountered while operating WSim.

This chapter discusses problem solving in three sections:
v Classifying problems
v Isolating problems
v Reporting problems.

Classifying problems
You can classify a problem encountered while operating WSim as one of the
following:
v Hardware problem
v Software problem
v Problem with WSim installation or procedures.

Classifying hardware problems
Hardware problems uncovered by WSim are usually related to the host processor
running either WSim or the system under test.

Classifying software problems
Software problems may be related either to WSim or to the system under test.
WSim problems can occur in either:
v WSim host processor code
v The operating system.

Problems in the system under test can occur in either:
v Operating system
v Application programs being tested.

Errors in other system software components are not discussed here because one
function of WSim is to discover such errors.

Classifying problems with installation and procedures
Problems you encounter when operating WSim may result from incorrect system
setup or a failure to follow established WSim procedures. These problems often
prevent WSim from operating or severely limit WSim functions.

Examples of problems with installation and procedures include the following:
v Invalid statement sequence in the message generation deck
v Invalid logic test definition.

133

Isolating problems
This section discusses the types of problems that may involve WSim and gives
suggestions for isolating and solving the problems. If the methods fail to produce a
solution, you should assume that the problem is caused by a WSim error and
follow the procedure for formally reporting a WSim problem given in“Problem
reporting” on page 135.

Program checks
A program check that occurs in the host processor code is probably a WSim
problem. However, a program check in the Loglist Utility, the Log Compare Utility,
or the Response Time Utility may be caused by an attempt to process a data set
other than a WSim log data set. This error may also occur if WSim does not write
the end-of-file indicator (tape mark on a tape data set) because of system failures.
The most common program check in this situation is a data exception (program
interruption code 7 or 0C7 ABEND), but others are also possible. You should
obtain documentation on the problem and report it using the procedure
in“Problem reporting” on page 135.

Loops
If the host processor task remains in a system state and there is no activity on the
lines, then WSim is probably in a program loop. WSim program loops can be
caused by specifying incorrect statement sequences in your message generation
decks. Verify that the message generation decks in your networks contain delimiter
statements as discussed in Creating WSim Scripts. Also, verify your STL programs
do not contain any loops that can never be exited. To isolate a loop problem, run
WSim with MSGTRACE=YES in your network definition, issue the ZEND operator
command, and run the Loglist Utility to determine the loop path. If the message
generation decks or STL programs are correct, then the loop is probably a WSim
problem. Record some of the storage addresses in the loop, make a storage dump
of the WSim region, and report the problem.

Incorrect or missing message traffic
If you are running a network, and no message traffic is on the lines or incorrect
data is being transmitted or received, one of the following problems may exist:
v Large intermessage delays: Cancel the problem network and then initialize and

start it with a network-level UTI value of 0. If message traffic starts almost
immediately, your intermessage delay values may be excessively large.

v Invalid response from the system under test: Verify that the system under test is
sending the correct data. This can be very important in the case of SNA header
information and 3270 buffer control characters.

v Network logic control: The following suggestions may be helpful in determining
why a terminal or device is waiting or generating incorrect data.
– If your network logic is complicated, you may want to generate a small,

simple test network for debugging purposes.
– Verify that the message generation decks or STL programs for the device do

not contain a misplaced WAIT statement.
– Verify that the terminals are not waiting for a message from the application

program that has not been sent.
– Use the console recovery facility to reset the WAIT indicator for the device

and to generate a message for the device from the operator console.
– For message generation decks, check the IF statements for the device.

134 WSim Workload Simulator: User's Guide

1. Verify that the LOC or LOCTEXT operand value is correct.
2. Verify that the TEXT or AREA operand value is correct.
3. Verify that a previous IF statement with STATUS=HOLD is not causing

the problem.
4. Verify that a network-level IF statement is not causing the problem.
5. Verify that the actions in a series of IF statements do not contradict one

another.
– For STL programs, check the following:

1. Verify that the ONIN, ONOUT, and WAIT statement conditions are
correct.

2. Make sure that WAIT statements are not coded without the UNTIL clause.
– Use the MSGTRACE network option to help determine the cause of logic

problems. This option allows you to follow the steps of message generation. It
helps you to determine if you are actually sending messages when you expect
to, if the proper IF statements are activated when the logic test is processed,
when calls and branches are made, and when EVENTs are signaled, posted,
or reset.

– Use the STLTRACE network option to help trace the messages of a
simulation, but at the higher STL program level. This option allows you to
follow the steps of execution through your STL program.

v Loops: See“Loops” on page 134 for information.
v Wrong message generation decks, STL programs, or networks: Initialize your

network with the LIST option. This option lists the network, message generation
decks, and STL programs you are running.

No outstanding WTOR
If you are using the WTOR command interface, the absence of a WTOR prompt
may be due to one of the following reasons:
v WSim subtask ABEND
v Loop in WSim
v Problem with the operating system.

If you cannot establish that the problem is with the operating system, the loss of
the WTOR is probably a WSim problem and should be reported.

Problem reporting
If you have encountered a problem with WSim and have not been able to resolve it
by following the procedures given in this chapter, you should open a PMR on the
RETAIN* system and have the following information available:
v A dump of the WSim region in the host processor
v Listings of your networks and message generation decks. Initialize your network

with the LIST option. This will list the exact network and message generation
decks that you are running.

v The operator console listing
v A complete listing of the log data set or the data set itself
v Dispatcher trace (if applicable)
v A dynamic dump of the control blocks (if applicable)
v A description of the environment at the time of the problem.

Chapter 19. Isolating problems 135

136 WSim Workload Simulator: User's Guide

Chapter 20. Specifying operator commands

The following sections provide a list of the operator commands, specification
operands, and operation operands you can use to control simulations. To help you
make use of this information, the following sections explain the terminology and
the conventions used when describing the operator commands.

Understanding operator command coding terms
For the various operator commands discussed in this chapter, the following terms
will be used:

ntwrk Indicates that you should enter a network name. This is the 1- to
8-character symbol in the name field of the NTWRK statement.

tcpip Indicates that you should enter a name of a TCP/IP group. This is
the 1- to 8-character symbol in the name field of the TCPIP
statement that defines a TCP/IP connection.

dev Indicates that you should enter a device name. This is the 1- to
8-character symbol in the name field of the DEV statement.

lu Indicates that you should enter an LU name. This is the 1 to
8-character symbol in the name field of a VTAMAPPL simulation LU
statement.

vtamappl Indicates that you should enter a VTAM application (VTAMAPPL)
name. This is the 1- to 8-character symbol in the name field of a
VTAMAPPL statement.

tp Indicates that you should enter a transaction program (TP) name.
This is the 1- to 8-character symbol in the name field of a TP
statement in a CPI-C simulation.

appclu Indicates that you should enter the name of an APPC LU. This is the
1- to 8-character symbol in the name field of an APPCLU statement
in a CPI-C simulation.

Understanding operator command coding conventions
These conventions are used in the following operator command descriptions:
v Capital letters represent values you code directly, without change.
v Lowercase italics represent operands for which you must supply a value.
v Brackets, [], enclose operands or symbols that are either optional or conditional.

An optional operand is one that you may choose to code or to omit,
independent of other operands. Omitting it may cause a specific default value to
be assumed. The assumed value is always given in the description of the
operand.
A conditional operand is one that you may need to code or to omit, depending
on how you code (or omit) other operands in the command. For each
conditional operand, the conditions under which you should code or omit it are
indicated.

v Braces, { }, and vertical lines, |, indicate that an operand has a value which you
must choose from the alternatives listed.

v An ellipsis (...) indicates that you may code a sequence of values within
parentheses.

137

Understanding resource names
The person creating the NTWRK generation deck gives each resource in the
simulation a name by which the resource can be correlated with operator
commands, logs, and traces. Clearly, if only one NTWRK is being simulated at a
time, the resource name is in the NTWRK being used. The resource name alone is
sufficient to uniquely identify the resource.

However, some simulation environments involve more than one NTWRK. In those
situations it may be desirable for a resource name to be duplicated in the different
NTWRKs. WSim allows you to qualify a resource name with the NTWRK name, to
form a NTWRK-qualified resource name. A NTWRK-qualified resource name is
formed by a NTWRK name, followed by a period, followed by the resource name.
For example, TESTLU in the NTWRK named network2 would have a
NTWRK-qualified resource name of network2.TESTLU.

Using operator commands
The following section describes the operator commands, specification operands,
and operation operands you can use to control simulated resources.

A-Alter network operands

A [resource,]{ area=newtext}

138 WSim Workload Simulator: User's Guide

{ATRABORT={DECK|PATH|NONE}}
{ATRDECK= name}
{CONRATE={YES|NO}
{CPITRACE={MSG|VERB|VERBEND|NONE}}
{D=dname,sname}
{DC n= integer}
{DEBUG={ON|OFF}
{DSEQ= integer}
{E=[rate][, interval]}
{H=chars}
{I= integer}
{IUTI=utiname}
{LC n=integer}
{LOGDSPLY={BEGIN|BOTH|END|NONE}}
{LSEQ= integer}
{M={A(integer)|F(integer)|R(n1[, n2])|T(integer)}
{MONCMND={ON|OFF}}
{MSG n={ON|OFF}}
{MSGTRACE={YES|NO}}
{NC n= integer}
{NSEQ= integer}
{NSW[n]={ON|OFF}}
{PATH={pathname|(pathname,...)}}
{PORT=portnumber}
{POST=event}
{PRTSPD=integer}
{QUIESCE}
{R= dname}
{RELEASE}
{RESET=event}
{RSTATS}
{S=[x][,[y][,{ z|OFF}]]}
{SERVADDR=addr}
{SIGNAL= event}
{STLTRACE={YES|NO}}
{SW[n]={ON|OFF}}
{TCn=integer}
{TSEQ= integer}
{TSW[n]={ON|OFF}}
{U= integer}
{UTI=(utiname,integer)}
{X={FULL|LINE|RATE|NONE}}

This command alters operand values for specified network resources.

resource

Function: This specifies the resource to be altered.

Format: You can specify one of the following values for resource:

ntwrk Indicates an alteration of the entire specified network.
tcpip Indicates an alteration of all devices in a TCP/IP group.
dev Indicates an alteration of the specified device. dev should be a

unique name for all active networks.
lu[-num] Indicates an alteration of the specified LU or a session associated

with that LU. -num specifies the session number of the LU session to
be altered. If you do not specify - num, all sessions associated with
the LU are altered. lu should be a unique name for all active
networks. lu-* is also acceptable, and resolves to the last session
number.

vtamappl Indicates an alteration of all LUs using the specified VTAMAPPL.

Chapter 20. Specifying operator commands 139

tp[-num] Indicates an alteration of the specified CPI-C transaction program
(TP). -num specifies the TP instance number to be altered. This
operand only applies to TPs that support multiple instances. If the
operand is specified for a TP that does not support multiple
instances, it is ignored. -num is a decimal number in the range from
1 to 99999. If -num is omitted, the command applies to the first TP
instance. If tp[-num] is specified without the appclu qualifier, the TP
name must be unique within the network. tp-* is also acceptable,
and resolves to the last instance number.

appclu Indicates an alteration of all TPs defined on the specified APPCLU.
appclu.tp[-num] Indicates an alteration of the specified CPI-C transaction program

(TP). -num specifies the instance number of the TP to be altered. If
you do not specify - num, the first instance is altered. appclu.tp-* is
also acceptable and resolves to the last instance.

Table 2 shows which A (Alter) command operands are valid with the indicated
levels of network resources.

Table 2. Valid A (Alter) command operands for network resource levels

Operand All Simulations
CPI-C Simulation or VTAMAPPL
Simulation

TCP/IP
Simulation

U± integer All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

s All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

N± integer All*, NTWRK None None

N s All*, NTWRK None None

ATRABORT All*, NTWRK VTAMAPPL, LU TCPIP, DEV

ATRDECK NTWRK VTAMAPPL, LU TCPIP, DEV

CONRATE All*, NTWRK None None

CPITRACE All*, NTWRK APPCLU, TP None

D NTWRK None None

DCn All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

DEBUG All*, NTWRK None None

DSEQ All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

E All*, NTWRK None None

H All*, NTWRK None None

I All*, NTWRK None None

IUTI NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

LC n All*, NTWRK VTAMAPPL, APPCLU TCPIP

LOGDSPLY All*, NTWRK VTAMAPPL, LU TCPIP, DEV

LSEQ All*, NTWRK VTAMAPPL, APPCLU TCPIP

M NTWRK VTAMAPPL, LU TCPIP, DEV

MONCMND All*, NTWRK None None

MSG n All*, NTWRK None None

140 WSim Workload Simulator: User's Guide

Table 2. Valid A (Alter) command operands for network resource levels (continued)

Operand All Simulations
CPI-C Simulation or VTAMAPPL
Simulation

TCP/IP
Simulation

MSGTRACE All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

NC n All*, NTWRK None None

NSEQ All*, NTWRK None None

NSW n All*, NTWRK None None

PATH NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

PORT All*, NTWRK None TCPIP, DEV

POST NTWRK None None

PRTSPD All*, NTWRK VTAMAPPL, LU None

QUIESCE All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

R NTWRK None None

RELEASE All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

RESET NTWRK None None

RSTATS All*, NTWRK VTAMAPPL, LU TCPIP, DEV

S All*, NTWRK None None

SERVADDR All*, NTWRK None TCPIP, DEV

SIGNAL NTWRK None None

STLTRACE All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

SWn All*, NTWRK VTAMAPPL, LU, APPCLU, TP TCPIP, DEV

TC n All*, NTWRK VTAMAPPL, APPCLU, TP TCPIP

TSEQ All*, NTWRK VTAMAPPL, APPCLU, TP TCPIP

TSWn All*, NTWRK VTAMAPPL, APPCLU, TP TCPIP

U All*, NTWRK None None

UTI NTWRK None None

X All*, NTWRK None None

* Applies to all active networks

Default: If you do not enter a value for resource, all networks are altered.

area= newtext

Function: Specifies the save area or user area and the new text information
that is to be stored in the save area or user area.

Format: You can specify the following values for the area operand:

N± integer Indicates the offset within the network user area where newtext is
inserted. integer is an integer between 0 and 32766 and must be
specified.

Chapter 20. Specifying operator commands 141

U± integer Indicates the offset within the device user area where newtext is to be
inserted. integer is an integer between 0 and 32766 and must be
specified.

N s Indicates the network save area where newtext is to be inserted. s is an
integer between 1 and 4095. You cannot specify offsets for network save
areas.

s Indicates the device save area where newtext is to be inserted. s is an
integer between 1 and 4095. You cannot specify offsets for device save
areas.

newtext is the text to be stored in the user area or save area.

Notes:

v You can specify newtext as any combination of EBCDIC and hexadecimal data.
The hexadecimal portion of the data must be enclosed within single quotes. To
specify an EBCDIC quote as part of the data, you must specify two continuous
quotes.

v EBCDIC data entered is not folded to uppercase.
v You can enter literal text DBCS data for newtext.
v If a value is valid and causes newtext to extend past the end of the area, the

alteration is performed, truncating the overflow.

ATRABORT={DECK|PATH|NONE}
Function: Specifies whether the current message generation deck or current
path of a device is to be ended when automatic terminal recovery (ATR) is
invoked. Refer to Creating WSim Scripts for a discussion of ATR.

ATRDECK=name
Function: Specifies whether the current message generation deck or current
path of a device is to be ended when automatic terminal recovery (ATR) is
invoked. Refer to Creating WSim Scripts for a discussion of ATR.

CONRATE={YES|NO}
Function: Specifies whether the interval report rates are to be printed at the
operator console.

CPITRACE={MSG|VERB|VERBEND|NONE}
Function: Specifies the level of CPI-C tracing to be performed. Either the CPI-C
verbs themselves or messages tracing the CPI-C verb flows can be written to
the log dataset for formatting by the loglist program.

Format: You can specify the following values for the CPITRACE operand:

MSG Specifies that CPI-C trace messages are to be logged, indicating the
issuance and completion of CPI-C verbs.

VERB Specifies that CPI-C verbs are to be logged when they are issued and
when they complete.

VERBEND
Specifies that CPI-C verbs are to be logged when they complete.

NONE
Specifies that no CPI-C trace information is to be logged.

Note: If CPITRACE=NONE is specified, all CPI-C message logging is
inhibited, including error messages.

142 WSim Workload Simulator: User's Guide

D= dname,sname
Function: Specifies deletion and substitution of a message generation deck or
STL procedure. This function specifies that the message generation deck or STL
procedure dname is to be marked not usable (deleted) and the message
generation deck or STL procedure sname will be substituted for the deleted
deck or procedure. sname must not be currently deleted. When a new path
entry is selected and you have used this command to delete the message
generation deck or STL procedure named in that entry, the substitute message
generation deck or STL procedure (sname) will be used instead of dname as the
new path entry. Similar substitutions are made for the decks or procedures
named by the FRSTTXT and ATRDECK operands of the NTWRK, TCPIP, DEV,
VTAMAPPL, or LU statements (or by the FRSTTXT operand of the APPCLU or
TP statement), if these decks or procedures have been deleted at the time they
are invoked. If the deck or procedure is branched into or called from other
message generation decks or STL procedures, this deletion has no effect. The
substitution is made only when the deleted message generation deck or STL
procedure is selected by a PATH statement or the FRSTTXT or ATRDECK
operands.

DCn= integer
Function: Specifies that device index counter n is to be set to the provided
integer value.

Format: n is from 1 to 4095 and integer is from 0 to 2147483647.

DEBUG={ON|OFF}
Function: Specifies that the network DEBUG option is to be turned on or off.
This function logs SNA request units containing encrypted or translated data.

DSEQ= integer
Function: Specifies that the device sequence counter is to be set to integer

Format: integer is from 0 to 2147483647.

E=[rate][, interval]
Function: Specifies a change in the expected message transfer rate (messages
transmitted from WSim) and the adjustment interval through which WSim
automatically adjusts the UTI. Refer to Creating WSim Scripts for information
on the automatic UTI adjustment facility.

Note: For networks that have multiple UTIs defined, the E operand will adjust
all UTIs in the network.

Format: The value for rate specifies the expected rate in messages per minute.
It is an integer from 0 to 65535. The value for interval specifies the adjustment
interval in seconds. It is an integer from 0 to 65535.

Default: If rate is omitted, the previously specified rate is left unchanged.

H= chars

Function: Specifies the new network heading text for interval reports. Format:
chars can be 1 to 24 bytes of data. You can enter literal text DBCS data. The
data is not folded to uppercase.

Default: If you do not enter data, the heading is set to blanks.

Note: You can use this operand on a network level only.

I= integer

Chapter 20. Specifying operator commands 143

Function: Specifies that the time between printing interval reports is to be
altered.

Format: integer represents minutes and may be from 1 to 240.

Note: You can use the I operand to save paper. Set I=240 initially. When an
interval report is required, set I=1 and, after the 1-minute interval has expired,
you receive the report. Reset I=240 until another report is required.

IUTI= utiname
Function: Specifies that the individual UTI for the specified device, terminal,
TP, or LU is to be changed to utiname.

Format: If IUTI=NTWRKUTI is specified, the network UTI is selected for the
individual UTI for the device.

LC n= integer
Function: Specifies that line index counter n is to be set to integer.

Format: n is from 1 to 4095 and integer is from 0 to 2147483647.

LOGDSPLY={BEGIN|BOTH|END|NONE}

Function: Specifies whether display and printer buffers are to be automatically
logged for formatting by the Loglist Utility. This option is valid for simulated
3270 and 5250 terminals and 3270 printers. It will be ignored for all others.

Format: You can specify the following values for the LOGDSPLY operand:

BEGIN Indicates that the display is to be logged at the beginning of message
generation only.

BOTH Indicates that the display is to be logged both at the beginning and end of
message generation for the device.

END Indicates that the display is to be logged at the end of message generation
only.

NONE Indicates that there will be no automatic display logging.

LSEQ= integer

Function: Specifies that the line sequence counter is to be set to integer.

Format: integer is from 0 to 2147483647.

M={A(integer)|F(integer)|R(n1[, n2])|T(integer)}

Function: Specifies the value multiplied by the user time interval (UTI) to
define the delay between messages to be altered. Refer to the DELAY operand
description under the LU (VTAMAPPL) statement in WSim Script Guide and
Reference.

Format: You can specify the following values for the M operand:

A Indicates that the delay is an average chosen randomly in the range from zero to
two times the specified integer. The value integer may be from 0 to 1073741823.
The average delay will be an integer value.

F Indicates that the delay is fixed and the integer specifies the value. The value
integer may be from 0 to 2147483647.

R Indicates that the delay is to be random, within the specified boundaries. The
value n1 is an integer from 0 to 255 and specifies the number of the RN
statement that names the rate table used in selecting the delay.
If you specify two values, the values n1 and n2 are integers from 0 to
2147483647 and specify the low (n1) and high (n2) limits of the range of random
delay values. n1 must be less than n2.

144 WSim Workload Simulator: User's Guide

T Indicates that the delay will be chosen randomly from the rate table on the
referenced RATE statement. The value integer specifies the name field on a RATE
statement and may be from 0 to 255.

MONCMND={ON|OFF}

Function: Specifies whether the function of monitoring script operator
commands and their responses is to be turned on or off. ON indicates that all
operator commands generated by message generation deck OPCMND
statements and their responses are monitored at the operator console.

MSG n={ON|OFF}
Function: Specifies whether message number n is to be displayed to the
console and logged to the log data set.

Format: n is any message number that can be inhibited. Refer to WSim Script
Guide and Reference for more information about the INHBTMSG operand on the
NTWRK statement.

MSGTRACE={YES|NO}

Function: Specifies whether message generation trace records should be
written to the log data set. If you specify a network, all resources within that
network will be affected. Otherwise, only the specified resource is affected.

NC n= integer

Function: Specifies that network index counter n is to be set to the value
integer.

Format: n is from 1 to 4095 and integer is from 0 to 2147483647.

NSEQ= integer
Function: Specifies that the network sequence counter is to be set to the value
integer.

Format: integer is from 0 to 2147483647.

NSW[n]={ON|OFF}

Function: Specifies that network-level switch n is to be set on or off.

Format: n is an integer from 1 to 4095.

Default: If you do not specify a value for n, all network-level switches are to
be set on or off.

PATH={ pathname|(pathname,...)}

Function: PATH= pathname specifies the PATH statement to be executed before
the next normally selectable PATH. This function occurs only once for each
path insertion entered. Normal PATH processing is resumed after the inserted
PATH is complete.

PATH=(pathname,...) specifies the new PATH statements to be referenced by the
terminals or devices. If you change a path using the A (Alter) command, the R
(Reset) command does not restore the previously defined path. You can restore
a path only by specifying the original path on another A (Alter) command. If
you specify PATH=(), the current path for the terminal or device is deleted and
processing continues based upon the sequence of PATH statements.

Format: pathname is the name coded in the name field on a PATH statement in
the network definition. If you specify multiple PATHs, each pathname is

Chapter 20. Specifying operator commands 145

separated by commas and the entire field enclosed in parentheses. You can
enter a maximum of either 25 path entries or 120 characters, including the A
(Alter) command and qualification.

PORT= portnumber

Function: Specifies the local port number to be used by a Simple TCP or
Simple UDP device.

Format: portnumber is an integer from 1 to 65535 representing the local port
number to be used.

POST= event

Function: Specifies the name of an event that is to be posted complete.

Format: event is from 1 to 8 alphanumeric characters.

PRTSPD= integer

Function: Specifies that the print speed is to be altered.

Format: integer is from 0 to 32767 and represents characters per second.

QUIESCE

Function: Specifies that the network, TCP/IP connections, VTAMAPPLs,
APPCLUs, LUs, or TPs are to receive messages and respond negatively to polls
while they are not generating any data messages.

R= dname

Function: Specifies the reinstatement of a previously deleted message
generation deck or STL procedure. The message generation deck or STL
procedure named in this operand is to be reinstated as usable. The substituted
message generation deck or STL procedure (sname), determined by the D
(Delete) operand on the A (Alter) command, will no longer be selected for the
reinstated deck or procedure (dname).

RELEASE
Function: Specifies that the network, TCP/IP connections, VTAMAPPLs,
APPCLUs, LUs, or TPs are to be released from the quiesce state.

RESET= event

Function: Specifies the name of an event that is to be marked as not complete.

Format: event is from 1 to 8 alphanumeric characters.

RSTATS

Function: Resets the online response-time statistics (RSTATS) for the specified
resources to zero. This prevents previous statistics from biasing future figures
and could be especially useful when you alter UTI values or change test
system parameters during a run.

Note: You can also reset online response-time statistics with the R (Reset)
operator command.

S=[x][,[y][,{ z|OFF}]]

Function: Specifies that the SCAN values are to be altered. Refer to the
description of the SCAN operand under the NTWRK statement in WSim Script
Guide and Reference for more information.

Format: You can specify the following values for the S operand:

146 WSim Workload Simulator: User's Guide

x The report interval and is between 0 to 255.

y The threshold value and is between 0 to 255.

z The delay before invoking automatic
terminal recovery. The limits are 0 to 255.
This also activates automatic terminal
recovery.

OFF Deactivates automatic terminal recovery.

Default: If you omit any of the operands, the corresponding values for the
network are left unchanged.

SERVADDR= addr

Function: Specifies the host server address to which you want to connect.

Format: addr is a dotted decimal IP address.

SIGNAL= event

Function: Specifies the name of an event to be signaled.

Format: event is from 1 to 8 alphanumeric characters.

STLTRACE={YES|NO}

Function: Specifies whether or not STL trace records should be written to the
log data set. If you specify a network, all resources within that network will be
affected. Otherwise, only the specified resource is affected.

SW[n]={ON|OFF}

Function: Specifies that device switch n is to be set on or off.

Format: n is an integer from 1 to 4095.

Default: If you do not specify a value for n, all device switches are to be set on
or off.

TC n= integer

Function: Specifies that terminal index counter n is to be set to the value
integer.

Format: n is from 1 to 4095 and integer is from 0 to 2147483647.

TSEQ= integer

Function: Specifies that the terminal sequence counter is to be set to the value
integer.

Format: integer is from 0 to 2147483647.

TSW[n]={ON|OFF}

Function: Specifies that the terminal-level switch indicated by n is to be turned
on or off.

Format: n is an integer from 1 to 4095.

Default: If you do not specify a value for n, all terminal level switches are to
be turned on or off.

U= integer

Function: Specifies that the UTI defined on the NTWRK statement is to be
changed to the indicated value.

Chapter 20. Specifying operator commands 147

Format: integer can be an integer from 0 to 65535.

UTI=(utiname,integer)

Function: Specifies that the individual UTI utiname is to be changed to the
value of integer.

Format: utiname can be from 1 to 8 alphanumeric characters. integer can be an
integer from 0 to 65535.

X={FULL|LINE|RATE|NONE}

Function: Specifies that the type of interval report should be changed to the
option specified.

Format: You can specify the following values for the X operand:

FULL Specifies that the entire report, including terminal and device statistics,
line totals, cumulative totals, and rates, is printed.

LINE Specifies that the report includes only line totals, cumulative totals, and
message rates.

RATE Specifies that the report includes only the network totals and message
rates.

NONE Specifies that no interval report is printed.

C-Cancel network resources

c [resource]

This command cancels a network or an APPCLU, VTAMAPPL, or TCPIP within
the network. If a network is canceled, an end of run report will be printed and all
control blocks for the network will be deleted from the system. To begin using the
canceled resource again, you must initialize the network.

resource

Function: Specifies the resource to be canceled.

Format: You can specify the following values for resource:

ntwrk Specifies a single network for which all resources are to be canceled.
appclu Specifies an APPCLU to be canceled.
vtamappl Specifies a VTAMAPPL to be canceled.
tcpip Specifies a TCP/IP connection to be canceled.

Default: If you do not specify a value for resource, all networks are canceled.

D-Dump control blocks

D ntwrk,{L[=resource]|N}

This command dumps the contents of control blocks to the printer.

148 WSim Workload Simulator: User's Guide

The output produced by this command is provided as a source of information to
help with debugging WSim problems. This internal information should never be
used as programming interface information.

ntwrk

Function: Specifies the network for which control blocks are to be dumped.

{L[= resource]|N}

Function: Specifies which resources are to be dumped.

Format: You can specify the following values for this operand:

L Specifies that all TCP/IP connections and their associated control blocks are
to be dumped.

L= tcpip Specifies that the TCP/IP connection control block for the specified tcpip is
to be dumped.

N
Specifies that the Network Control Block (NCB) and associated message
generation control blocks are to be dumped.

Default: If you omit the L and N operands, all control blocks in the network are
dumped.

E-Restart message logging

E [ntwrk]

The E command restarts message logging for the specified ntwrk log data set
(NTWRKLOG) or for the general log data set if you do not specify ntwrk.

For more information about logging by network, refer to Creating WSim Scripts. For
more information about the NTWRKLOG statement, refer to WSim Script Guide and
Reference.

F-Enter console recovery

F resource

This command places the specified resource in console recovery mode where you
can transmit specific sequences or end the current PATH entry. Console message
ITP100I DATA RECEIVED - data is issued to indicate any data received while in
console recovery mode. You can use the subcommands described below with the
information from message ITP100I to create an interactive conversation between
the operator and the host application.

Entering console recovery causes all wait conditions, delays, and input inhibited
conditions to be reset. It is possible, therefore, that a terminal can be recovered by
simply entering and exiting console recovery.

resource

Function: Specifies the resource for console recovery.

Chapter 20. Specifying operator commands 149

Format: You can specify the following values for resource:

dev Specifies the device for recovery.

lu[- num] Specifies the LU session for recovery. -num indicates the session
within the LU. If you omit -num, the recovery is started for the
first session within the LU. lu-* can also be specified, which
resolves to the last session number.

While in this mode, you can enter only console recovery subcommands. These
subcommands define the action to be taken. The subcommands are as follows:

Subcommand Description

* data This subcommand is an asterisk followed by data. It causes the
specified data (through the last nonblank) to be entered as a
message from the terminal or device in console recovery mode.
An asterisk entered without data generates:

v An Enter key for 3270 and LU7

v An unpredictable 1-character message for all other devices.

Notes:

v You can specify data as EBCDIC and hexadecimal. The
hexadecimal portion of the data must be within single quotes.
To specify an EBCDIC quote (') as part of the data, you must
specify two continuous quotes ('').

v The EBCDIC data entered is not folded to uppercase.

v You can enter literal text DBCS data.

K key [(c)] This subcommand simulates the action of the program function
keys of 3270 or LU7 devices, where c is an optional data character
to be entered at the current cursor position before simulating the
action of the key specified. It is valid for these device types only.
Keys supported for 3270 are:

ENT CLR PA1 PA2 PA3 PF1 PF2 PF3 ... PF24

Keys supported for LU7 are:

ENT CLR CMD1 CMD2 CMD3 ... CMD24

N This subcommand ends message generation using the current
message generation deck. Message generation begins at the next
specified message generation deck. The command also ends
console recovery mode.

Q This subcommand enables you to query the specified resource.
The resulting display is the same information reported for a Q
(Query) operator command for the resource that is in console
recovery.

X This subcommand ends console recovery mode without further
changes to message generation.

G-Terminal status query

G [ntwrk],{ACT|INACT|QUIESCE|READY|TERM}

150 WSim Workload Simulator: User's Guide

This command displays those simulated terminals which are active, inactive,
quiesced, ready, or terminated. For this command, terminal means any message
generating resource.

ntwrk

Function: If multiple networks are being simulated, ntwrk specifies the network
to which this command pertains.

Default: If you do not specify a value for ntwrk, all terminals in all initialized
networks are listed.

{ACT|INACT|QUIESCE|READY|TERM}

Function: Specifies the status type to be listed.

Format: You can specify one of the following values for this operand:

ACT Lists active terminals.
INACT Lists inactive terminals.
QUIESCE Lists quiesced terminals.

Note: Terminals that are quiesced are not listed as active.
READY Lists ready terminals. This status only applies to TP instances in a

CPI-C simulation. This status indicates that the TP instance is a server
that is waiting for an incoming attach request.

TERM Lists terminated terminals. This status only applies to TP instances in a
CPI-C simulation. This status indicates that all message generation
activity defined for this TP instance has completed.

I-Initialize a network

Intwrk[,{LN|L}]
[,s]

This command causes WSim to read the network definition statements from the
specified member of the data set defined by the INITDD DD statement. The
member has the same name as the name field of the NTWRK statement. The
members specified on INCLUDE statements in the network are read from the data
set defined by the MSGDD DD statement. After all members have been read, the
necessary control blocks are built for the network simulation.

ntwrk

Function: Specifies the data set member name of the network to be initialized.

{L|LN}

Function: Specifies what is to be printed when the network is initialized.

Format: You can specify the following values for this operand:

LN Specifies that only the network definition statements are to be listed on the
printer as the network is initialized.

L Specifies that the entire script (network definition and message generation
statements) is to be listed on the printer as it is initialized.

S

Chapter 20. Specifying operator commands 151

Function: Specifies that the network is to be automatically started at the
completion of initialization.

M-Display monitor facility

M [resource,]{ON, DISPLAY=name|OFF}
[,AID={ON |OFF|(row,column)}
[,CODE={EBCDIC |ASCII}
[,DLOGMOD=logname
[,LINES={number|2}]
[,SOURCE={ BLOCKS |DATA}
[,TIMER={integer|10}]
[,UPDATE={MONITOR|TIMER|XMITRECV}]
[,VIEW={DATA|SCREEN}]

This command causes the Display Monitor Facility to start or stop a session with a
monitor display, or list the devices being monitored. Each Display Monitor Facility
session is associated with the simulated device being monitored.

resource

Function: Specifies the simulated device or simulated LU session to start or
stop monitoring.

Format: You can specify the following values for resource:

dev Specifies the simulated device to start or stop monitoring.

lu[-num] Specifies the simulated LU session to start or stop monitoring, where -num
indicates which half-session of this LU is to be monitored. If you omit
-num, the first session is assumed. lu-* can also be specified, which resolves
to the last session number.

tp[-num] Specifies the simulated CPI-C transaction program to start or stop
monitoring, where -num indicates which instance of this TP is to be
monitored. If you omit -num, the first instance is assumed. tp-* can also be
specified, which resolves to the last instance number.

Default: When you enter the M command without specifying a value for
resource, a list of the simulated devices currently being monitored is displayed.
Coding other operands is not allowed.

{ON,DISPLAY= name|OFF}

Function: Activates or deactivates the Display Monitor Facility for the
simulated device.

Format: You can specify the following values for this operand:

ON,DISPLAY=
name

Causes the Display Monitor Facility to go into session with the display
specified by name. All Display Monitor Facility activity for resource is
shown on this display. The display specified by name must be a 3270
display.

OFF Causes the Display Monitor Facility to deactivate the session with the
display monitoring the activity for resource. Coding other operands is
not allowed.

AID={ON|OFF|(row,column)}

152 WSim Workload Simulator: User's Guide

Function: Specifies whether or not the attention identifier (AID) value
generated by resource will be displayed on the monitoring display screen (name)
when UPDATE=XMITRECV and VIEW=SCREEN are specified.

Format: When you specify ON, the AID value will be displayed on the
monitoring display screen in the lower right corner. When you specify OFF, the
AID value will not be displayed. When you specify (row,column), the AID value
will be displayed on the monitoring display screen at the specified screen
location, where row and column are integer values from 1 to 255. If the row and
column values specified cause the AID display field to be displayed on more
than one row or to be displayed outside of the monitor display screen, the AID
display field will be moved to the nearest monitor display screen location.

Default: ON. This operand is optional.

Note: This operand is valid only when you specify VIEW=SCREEN and
UPDATE=XMITRECV.

CODE={EBCDIC|ASCII}

Function: Specifies whether to display monitored data in EBCDIC or ASCII.

Format: EBCDIC or ASCII.

Default: EBCDIC

DLOGMOD= logname

Function: Specifies the name of the VTAM Logon Mode Table entry used for
session initiation between name and the Display Monitor Facility. This operand
is optional.

LINES={number|2}

Function: Specifies the number of lines shown each time the monitored device
transmits or receives data.

Format: number can be an integer from 1 to the number of lines on the Display
Monitor Facility display, up to a maximum of 99 lines. For SNA devices, the
minimum number of lines used is two because one of the lines (number)
specified is used for SNA formatting.

Default: 2. This operand is optional.

Note: This operand is valid only when you specify VIEW=DATA.

SOURCE={ BLOCKS |DATA}

Function: If the screen size of resource is larger than the screen size ofname,
specifying SOURCE=BLOCKS truncates the display image to fit the monitoring
display. Specifying SOURCE=DATA does not truncate display images to fit the
monitoring display. This may result in an error if the screen sizes are different.

Format: When you specify BLOCKS, the internal control blocks are used. When
you specify DATA, the data stream transmitted or received by the simulated
3270 display is used.

Default: BLOCKS. This operand is optional.

Notes:

1. This operand is valid only when you specify VIEW=SCREEN and
UPDATE=XMITRECV.

2. When you specify SOURCE=BLOCKS, the following occurs:

Chapter 20. Specifying operator commands 153

v Programmed symbols are not shown on the display monitor screen
image. However, extended field and character attributes for color and
highlighting are shown on the monitoring display.

v Double-byte character set (DBCS) data is displayed when both the
simulated and monitor displays support DBCS and have the same screen
sizes.

v Field outlining attributes are displayed when the monitor display
supports field outlining.

v DBCS data is displayed on a non-DBCS monitor display as single-byte
character set data with SO and SI characters shown as < and >
respectively.

3. When you specify SOURCE=DATA, your display image is not updated to
show the results of the following:
v An erase input (ERIN) statement is issued by the simulated display.
v An erase end of field (EREOF) statement is issued by the simulated

display.
v The location of data entered during the message generation process by

the simulated display that is preceded by nulls that are suppressed when
the message is sent to the host application. The location of the data on
the monitor screen is shifted left and overlays the suppressed nulls.

v Data streams rejected by the simulated display are not passed to the
monitor display.

4. When you specify SOURCE=DATA and the simulated display has
DBCS=YES specified in the network definition and the monitor display also
supports 3270 DBCS data streams, the monitor display may reject data
streams for one of the following reasons:
v The host application program created a DBCS subfield with imbedded

nulls that are suppressed if the DBCS subfield is sent back to the host
application. In this case, an SI character is not paired with an SO
character on the monitor display.

v Suppressed nulls cause the data sent to the host application program to
be shifted left and cause a DBCS character to be split on the monitor
display.

If this problem occurs with SOURCE=DATA, use SOURCE=BLOCKS to avoid
this situation. As a general rule, use SOURCE=BLOCKS when monitoring
simulated 3270 DBCS displays.

TIMER={ integer| 10 }

Function: Specifies the timer value in seconds that is used when you specify
UPDATE=TIMER.

Format: integer is from 1 to 600.

Default: 10 seconds. This operand is optional.

Note: This operand is valid only when you specify VIEW=SCREEN and
UPDATE=TIMER.

UPDATE={MONITOR|TIMER| XMITRECV }

Function: Specifies when the monitor display is updated.

Format: When you specify MONITOR, the monitor display is updated each
time a MONITOR statement is processed during message generation by the
monitored display (resource). When you specify XMITRECV, the monitor

154 WSim Workload Simulator: User's Guide

display is updated as data is transmitted or received by the monitored display
(resource). When you specify TIMER, the monitor display is updated each time
the specified or defaulted timer value expires.

Default: XMITRECV. This operand is optional.

Note: This operand is valid only when you specify VIEW=SCREEN.

VIEW={DATA| SCREEN }

Function: Specifies whether screen images or data flows are to be shown on
the monitor display.

Format: When you specify DATA, the monitored device's (resource) transmitted
and received data flows are shown on the monitor display. When you specify
SCREEN, the monitored device's (resource) screen image is shown on the
monitor display. You can only specify VIEW=SCREEN for monitoring
simulated 3270 displays.

Default: SCREEN for a simulated 3270 display and DATA for a simulated
non-3270 device.

Notes:

v You may abbreviate keyword operands and applicable values. For example, all
of the following character strings specify UPDATE=MONITOR:
UP=M
U=MO
UPDA=MONIT
UPDATE=M

v Care should be taken in using abbreviations. The character string used must be
long enough to uniquely identify the desired operand. The character string D
could mean either DISPLAY or DLOGMOD. If you code the character string D
for an operand, it will default to DISPLAY.

Examples: The following are some sample formats for the M command:
M LU327-1,ON,DISPLAY=VTAMLU1,VIEW=SCREEN

This command activates a session between the Display Monitor Facility and
VTAMLU1 and monitors the first half-session of LU3270. The following defaults
are accepted: SOURCE=BLOCKS, TIMER=10, UPDATE=XMITRECV, AID=ON.
M LU327-1,OFF

This command deactivates the Display Monitor Facility session that was
monitoring device LU3270-1. This session was between VTAMLU1 and the Display
Monitor Facility.
M NDS36,ON,DI=VTAMLU3,V=DA,L=1

This command activates a session between the Display Monitor Facility and
VTAMLU3 and monitors the NDS30060 device. The Display Monitor Facility
monitors the data stream for device NDS30060 and shows 10 lines of text for each
transmitted and received data stream.

O-Output data

o

Chapter 20. Specifying operator commands 155

This command closes and reallocates the SYSPRINT data set, if the SYSPRINT data
set was directly allocated at WSim startup (see Chapter 14, “Running WSim,” on
page 91 for information about starting WSim). The dynamically allocated
SYSPRINT data set under MVS is closed and reallocated, which frees any
previously printed data to be written by the MVS writer routines.

This command is ignored if the SYSPRINT data set has not been dynamically
allocated.

P-Stop network resources

P [resource]

This command stops activity for a network or an APPCLU, VTAMAPPL, or TCPIP
within the network. All statistics and I/O activity are halted for the specified
resources. Stopped resources may be restarted by entering an S (Start) operator
command.

resource

Function: Specifies the resource to be stopped.

Format: You can specify the following values for resource:

ntwrk Specifies a single network for which all APPC LUs, VTAM applications, and
TCP/IP connections are to be stopped.

appclu Specifies an APPCLU to be stopped.
vtamappl Specifies a VTAMAPPL to be stopped.
tcpip Specifies a TCP/IP connection to be stopped.

Default: If you do not specify a value for resource, all active networks are to be
stopped.

Q-Query network resources

Q [resource[,area[,length]]]

This command displays the current status of a network resource at the operator's
console.

resource

Function: Specifies the resource to be queried.

Format: You can specify the following values for resource:

ntwrk Specifies the network to be displayed.

appclu Specifies the APPCLU to be displayed.

vtamappl Specifies the VTAMAPPL to be displayed.

tcpip Specifies the TCP/IP connection to be displayed.

dev Specifies the device to be displayed.

156 WSim Workload Simulator: User's Guide

lu[- num] Specifies the LU session to be displayed, where -num indicates which
session is to be displayed. If you omit - num, the first session of the
specified LU is displayed. lu-* is also accepted which resolves to the last
session number.

tp[- num] Specifies the simulated CPI-C transaction program to be displayed,
where -num indicates which instance is to be displayed. If you omit -
num, the first instance of the specified TP is displayed. tp-* is also
accepted which resolves to the last instance number.

appclu.tp[-
num]

Specifies the simulated CPI-C transaction program to be displayed,
where -num indicates which instance is to be displayed. If you omit -
num, the first instance of the specified TP is displayed. appclu.tp-* is also
accepted which resolves to the last instance number.

Default: If you do not specify a value for resource or area, all initialized
networks and their status are to be displayed using console messages ITP006I
and ITP012I.

area

Function: Specifies the save area or user area to be queried. If you query an
area, you must specify the associated resource.

Format: You can specify the following values for the area operand:

N± intege r Indicates the offset within the network user area to begin
displaying data. ± integer is an optional integer between 0 and
32766. N+ integer indicates an offset from the beginning of the
network user area. N- integer indicates an offset from the end of
the network user area. If you do not specify ± integer, the user
area is displayed as if you specified a value of +0.

U± intege r Indicates the offset within the device user area to begin
displaying data. ± integer is an optional integer between 0 and
32766. U+ integer indicates an offset from the beginning of the
device user area. U- integer indicates an offset from the end of the
device user area. If you do not specify ± integer, the user area is
displayed as if you specified a value of +0.

N s± integer Indicates the offset within the network save area s to begin
displaying data. s is an integer between 1 and 4095. N s+ integer
indicates an offset from the beginning of the network save area.
N s- integer indicates an offset from the end of the network save
area. ± integer is an optional integer between 0 and the length of
the save area. If you do not specify ± integer, the save area is
displayed as if you specified a value of +0.

s± intege r Indicates the offset within the device save area s to begin
displaying data. s is an integer between 1 and 4095. s+ integer
indicates an offset from the beginning of the device save area. s-
integer indicates an offset from the end of the device save area. ±
integer is an optional integer between 0 and the length of the save
area. If you do not specify ± integer, the save area is displayed as
if you specified a value of +0.

length

Function: Specifies the length of the data to be displayed.

Format: You can specify the following values for the length operand:

Chapter 20. Specifying operator commands 157

number Indicates the length of the area to be displayed starting at the point specified
by area. If number is greater than the length of the data in the area starting at
the point specified by area, all of the data from that point is displayed.

* Indicates that the entire area from the point specified by area is to be
displayed.

Default: 256.

R-Reset a network

R[ntwrk]

This command clears all terminal statistics counters shown on interval reports for a
specified network and resets the network to its initial condition. The R (Reset)
command also clears online response-time statistics (RSTATS) for network
resources. You must stop a network before you can reset it.

ntwrk

Function: Specifies the stopped network to be reset.

Default: If you do not specify a value for ntwrk, all stopped networks are to be
reset.

S-Start network resources

S [resource]

This command causes WSim to start activity for a network or an APPCLU,
VTAMAPPL, or TCPIP within a network.

resource

Function: Specifies the resource to be started.

Format: You can specify the following values for resource:

ntwrk Specifies a single network for which all APPC LUs, VTAM applications and
TCP/IP connections are to be started.

appclu Specifies an APPCLU to be started.
vtamappl Specifies a VTAMAPPL to be started.
tcpip Specifies a TCP/IP connection to be started.

Default: If you do not specify a value for resource, all networks previously
initialized are to be started.

T-Dispatcher traces

T [{ALL |DSP}

158 WSim Workload Simulator: User's Guide

This command dumps trace tables to the printer. The trace that is always active is
the dispatcher trace facility. The output produced by this command is provided as
a source of information to help with debugging WSim problems. This internal
information should never be used as programming interface information.

{ ALL |DSP}

Function: Specifies the types of trace tables to be dumped to the SYSPRINT
data set.

Format: You can specify the following values for this operand:

ALL Specifies that the dispatcher trace is to be dumped to the SYSPRINT data set.

DSP
Specifies that the dispatcher trace entries are to be dumped to the SYSPRINT
data set.

Default: ALL

W-RSTATS query

W resource

This command returns the RSTATS (response statistics) information for the
specified resource.

resource

Function: Specifies the resource for which RSTATS information is to be
returned.

Format: You can specify the following values for resource

dev Specifies the device to be queried.

lu[- num] Specifies the LU session to be queried, where -num indicates which session
within the LU. If you omit - num, the first session within the LU is queried.
lu-* is also accepted which resolves to the last session number.

Note: You can use the A (Alter) and the R (Reset) operator commands to reset
RSTATS. For information about the format of the RSTATS messages, refer to WSim
Script Guide and Reference.

Z-Closedown

Z END
ZEND

This command causes an orderly shutdown of the WSim system and writes the
message log buffers to the log data set. It causes the job to end.

Chapter 20. Specifying operator commands 159

*-Comment

* [comment_data]

This command performs no operation. Its purpose is to write a console type record
to the log data set containing the comment data from the command.

This command has no operands other than the comment data.

The total length of the command and its comment data cannot exceed 120
characters.

$-Exit

$ ntwrk,[data]

This command passes user data to a network-level user exit specified by the
NETEXIT or UCMDEXIT operand.

This command is part of a general-use programming interface which allows the
customer to write programs that use the services of WSim.

For more information about the $ (Exit) operator command and about user exits,
refer to WSim User Exits and Creating WSim Scripts.

ntwrk

Function: Specifies the name of the NTWRK statement for which the command
is entered. You must enter the comma, even if you specify no data.

data

Function: Specifies the data to be passed to the user exit. WSim validates the
network name and then passes the data to the NETEXIT or UCMDEXIT
associated with the network without validation or translation.

Format: The total length of a $ (Exit) command cannot exceed 120 characters.
The length of the data passed to the user exit must be less than or equal to 120
minus n, where n is the length of $ ntwrk.

Notes:

v The EBCDIC data entered is not folded to uppercase.
v You can enter literal text DBCS data.

160 WSim Workload Simulator: User's Guide

Part 3. Appendixes

161

162 WSim Workload Simulator: User's Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

163

Trademarks and service marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

CICS® InfoWindow IMS™

MVS MVS/ESA MVS/SP
MVS/XA OS/390® RETAIN®

Series/1 SP System/36
System/38 System/370 Systems Application Architecture®

VTAM

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

164 WSim Workload Simulator: User's Guide

Glossary

This glossary includes terms and definitions from
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems,
GC20-1699-6. Further definitions are from the
following volumes and reports. The symbols
follow the definitions to which they refer.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v Definitions from draft proposals and working
papers under development by the International
Standards Organization, Technical Committee
97, Subcommittee 1 are identified by the
symbol (TC97).

v Definitions from draft international standards,
draft proposals, and working papers in
development by the ISO/TC97/SC1 are
identified by the symbol (T), indicating final
agreement has not yet been reached among
participating members.

v Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the
International Consultative Committee on
Telegraph and Telephone of the International
Telecommunication Union, Geneva, 1980 are
identified by the symbol (CCITT/ITU).

v Definitions from published sections of the ISO
Vocabulary of Data Processing, developed by the
International Standards Organization, Technical
Committee 97, Subcommittee 1 and from
published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of
ISO Technical Committee 95, are indicated by
the symbol (ISO).

A

AID. Attention identifier.

American National Standard Code for
Information Interchange (ASCII).

The standard code, using a coded
character set consisting of 7-bit coded
characters (8 bits including parity check),

used for information interchange among
data processing systems, data
communication systems, and associated
equipment. The ASCII set consists of
control characters and graphic characters.
(A)

API. Application program interface.

application program interface (API).
(1) The formally defined programming
language interface between an IBM
system control program or licensed
program and its user. (2) The interface
through which an application program
interacts with an access method. In
VTAM, it is the language structure used
in control blocks so that application
programs can reference them and be
identified to VTAM.

ASCII.
American National Standard Code for
Information Interchange.

attention identifier (AID).
A code that the terminal sends in the
inbound data stream to identify the
operator action or structured field
function that caused the data stream to be
sent to the application program. An AID
is always sent as the first byte of the
inbound data stream. Structured fields in
the data stream may also contain an AID.

Availability Monitor (AVMON).
A sample set of network definition
statements and message generation decks
provided with WSim which monitors the
availability of host application
subsystems.

available.
In VTAM, pertaining to a logical unit that
is active, connected, enabled, and not at
its session limit.

AVMON.
Availability Monitor.

B

basic sequential access method (BSAM).
An access method for storing or retrieving

165

data blocks in a continuous sequence,
using either a sequential access or a direct
access device.

BSAM.
Basic sequential access method.

C

chain.
A group of logically linked records, for
example, an SNA message.

Common Programming Interface for
Communications (CPI-C).

(1) In WSim, an application programming
interface (API) used to perform
program-to-program communications
using LU type 6.2 communication
protocols. (2) An evolving application
programming interface (API), embracing
functions to meet the growing demands
from different application environments
and to achieve openness as an industry
standard for communications
programming. CPI-C provides access to
interprogram services such as (a) sending
and receiving data, (b) synchronizing
processing between programs, and (c)
notifying a partner of errors in the
communication.

CPI-C. Common programming interface for
communications.

D

DASD.
Direct access storage device.

data flow control (DFC).
In SNA, a request/response unit (RU)
category used for requests and responses
exchanged between the data flow control
layer in one half-session and the data
flow control layer in the session partner.

data set.
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

data set members.
Members of partitioned data sets that are
individually named elements of a larger
file that can be retrieved by name.

DBCS.
Double-byte character set.

DASD.
Direct access storage device.

ddname.
Data definition name.

DFC. Data flow control.

direct access storage device (DASD).
A device in which the access time is
effectively independent of the location of
the data. For example, a disk.

Display Monitor Facility.
A VTAM application program within
WSim that displays simulated 3270 screen
images on a monitor. It is used to monitor
a WSim simulation dynamically, enabling
a user to debug scripts and view
interactions with host applications.

double-byte character set (DBCS).
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols that
can be represented by 256 code points,
require double-byte character sets.
Because each character requires two bytes,
the typing, display, and printing of DBCS
characters requires hardware and
programs that support DBCS.

duplex.
In data communication, pertaining to a
simultaneous two-way independent
transmission in both directions.
Synonymous with full duplex. (A)
Contrast with half duplex.

E

EBCDIC.
Extended binary-coded decimal
interchange code.

event.
(1) An occurrence of significance to a task;
typically, the completion of an
asynchronous operation, such as an
input/output operation. (2) In WSim, a
named indicator/flag which can be used
for communications among terminal
scripts.

166 WSim Workload Simulator: User's Guide

extended binary-coded decimal interchange code
(EBCDIC).

A coded character set of 256 8-bit
characters.

F

facility.
(1) An operational capability, or the
means for providing such a capability. (T)
(2) A service provided by an operating
system for a particular purpose; for
example, the checkpoint/restart facility.

FDX. Full duplex.

File Transfer Protocol (FTP).
In the Internet suite of protocols, an
application layer protocol that uses TCP
and Telnet services to transfer bulk-data
files between machines or hosts.

FTP. File transfer protocol.

full duplex (FDX).
Synonym for duplex.

G

generalized trace facility (GTF).
An optional OS/VS service program that
records significant system events, such as
supervisor calls and start I/O operations,
for the purpose of problem determination.

GTF. Generalized trace facility.

H

half duplex.
In data communication, pertaining to an
alternate, one way at a time, independent
transmission. (A) Contrast with duplex.

I

I/O. Input/output.

IMS/VS.
Information Management System/Virtual
Storage.

Information Management System/Virtual
Storage (IMS/VS).

A general purpose system that enhances
the capabilities of OS/VS for batch
processing and telecommunication and
allows users to access a
computer-maintained data base through
remote terminals.

input/output (I/O).
(1) Pertaining to a device whose parts can
perform an input process and an output
process at the same time. (2) Pertaining to
a functional unit or channel involved in
an input process, output process, or both,
concurrently or not, and to the data
involved in such a process. Note: The
phrase input/output may be used in place of
input/output data, input/output signals, and
input/output process when such a usage is
clear in context. (3) Pertaining to input,
output, or both.

instance.
A copy of a transaction program that is
operating on a logical unit. If multiple
instances are supported on the logical
unit, multiple copies of the same
transaction program can operate
simultaneously.

Interactive System Productivity Facility (ISPF).
An IBM licensed program that serves as a
full-screen editor and dialogue manager.
Used for writing application programs, it
provides a means of generating standard
screen panels and interactive dialogues
between the application programmer and
terminal user.

intermessage delay.
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered.
Synonymous with think time.

ISPF. Interactive System Productivity Facility.

J

JCL. Job control language.

job control language (JCL).
A problem-oriented language designed to
express statements in a job that are used
to identify the job or describe its
requirements to an operating system. (A)

Log Compare Utility.
A utility that enables WSim to compare
3270 display records from two log data
sets and report the differences.

logic test.
In WSim, a conditional test on an input or
output message, a counter, or other item
using the IF statement. The IF actions can
be used to control the message generation
process.

Glossary 167

logical unit (LU).
(1) A port through which a user gains
access to the services of a network. (2) In
SNA, a port through which an end user
accesses the SNA network and the
functions provided by system services
control points (SSCPs). An LU can
support at least two sessionsone with an
SSCP and one with another LUand may
be capable of supporting many sessions
with other logical units.

Loglist Utility.
A utility that enables WSim to produce a
formatted report of the log data set.

LU. Logical unit.

M

message format service (MFS).
In IMS/VS, an editing facility that allows
application programs to deal with simple
logical messages instead of
device-dependent data, thus simplifying
the application development process.

message generation.
In WSim, the process of executing
statements that generate messages from
the resources being simulated by WSim.

message generation statements.
The collection of statements that define
the actions to be performed by WSim,
including message generation and logic
testing.

MFS. Message format service.

module.
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading;
for example, the input to, or output from,
an assembler, compiler, linkage editor, or
executive routine. (A)

MTRC.
Message generation trace record.

Multiple Virtual Storage (MVS).
An IBM licensed program whose full
name is the Operating System/Virtual
Storage (OS/VS) with Multiple Virtual
Storage/System Product for System/370.
It is a software operating system
controlling the execution of programs.

MVS. Multiple Virtual Storage.

N

NC. Network control.

NCB. Network control block.

network.
The set of statements defining an entire
network, including both the network
definition statements and the message
generation source statements. Should not
be confused with a packet switching
network.

network control (NC).
In SNA, an RU category used for requests
and responses exchanged for such
purposes as activating and deactivating
explicit and virtual routes and sending
load modules to adjacent peripheral
nodes.

network control block (NCB).
A WSim control block containing
information about simulated networks.

network definition statements.
A collection of statements that define the
network configuration WSim uses when
processing the message generation source
statements.

node. (1) In SNA, an endpoint of a link or
junction common to two or more links in
a network. Nodes can be distributed to
host processors, communication
controllers, cluster controllers, or
terminals. Nodes can vary in routing and
other functional capabilities. (2) In VTAM,
a point in a network defined by a
symbolic name.

O

operating system (OS).
Software that controls the execution of
programs. An operating system may
provide services such as resource
allocation, scheduling, input/output
control, and data management.Note:
Although operating systems are
predominantly software, partial or complete
hardware implementations are possible. (A)

OS. Operating system.

P

PA. Program attention.

168 WSim Workload Simulator: User's Guide

partitioned data set (PDS).
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

path information unit (PIU).
In SNA, a message unit consisting of a
transmission header (TH) alone, or of a
TH followed by a basic information unit
(BIU) or a BIU segment.

PF. Program function.

PIU. Path information unit.

programmed symbols (PS).
In the 3270 Information Display System,
an optional feature that stores up to six
user-definable, program-loadable
character sets of 190 characters each in
terminal read/write storage for display or
printing by the terminal.

PS. Programmed symbols.

PTN. Partition control block.

PU. Physical unit.

Q

QSAM.
Queued sequential access method.

queued sequential access method (QSAM).
An extended version of the basic
sequential access method (BSAM). When
this method is used, a queue is formed of
input data blocks that are awaiting
processing or of output data blocks that
have been processed and are awaiting
transfer to auxiliary storage or to an
output device.

R

record.
(1) A set of data treated as a unit (TC97);
for example, in stock control, each invoice
could constitute one record. (2) In VTAM,
the unit of data transmission for
record-mode. A record represents
whatever amount of data the transmitting
node chooses to send. (3) In Series/1*, a
portion of a data set accessed at the
logical level (GET/PUT).

request/response header (RH).
In SNA, control information preceding a
request/response unit (RU), that specifies

the type of RU (request unit or response
unit) and contains control information
associated with that RU.

request/response unit (RU).
In SNA, a generic term for a request unit
or a response unit.

request unit (RU).
(1) In SNA, a message unit that contains
control information, such as a request
code, or function management (FM)
headers, end-user data, or both. (2) In
DPCX, the smallest unit of data or control
information.

resource.
(1) Any facility of the computing system
or operating system required by a job or
task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs. (2) In the NetView program,
any hardware or software that provides
function to the network.

Response Time Utility.
A utility that enables WSim to analyze
response times for activities on the log
data set.

response unit (RU).
In SNA, a message unit that
acknowledges a request unit; it may
contain prefix information received in a
request unit. If positive, the response unit
may contain additional information (such
as session parameters in response to
BIND session), or if negative, contains
sense data defining the exception
condition.

return code.
A code used to influence the execution of
succeeding instructions. (A)

RH. Request header or response header.

RNR. Receive not ready.

RR. Receive ready.

RU. Request unit or response unit.

S

SA. Set attribute.

SC. Session Control.

script. The set of statements defining an entire
network, including both the network

Glossary 169

definition statements and the message
generation source statements.

Script Generator Utility.
A utility that enables WSim to convert
data captured from a system into message
generation scripts.

secondary logical unit (SLU).
In SNA, the logical unit (LU) that
contains the secondary half-session for a
particular LU-LU session. An LU may
contain secondary and primary
half-sessions for different active LU-LU
sessions. Contrast with primary logical
unit (PLU).

session control (SC).
In SNA, (1) One of the components of
transmission control. Session control is
used to purge data flowing in a session
after an unrecoverable error occurs, to
resynchronize the data flow after such an
error, and to perform cryptographic
verification. (2) A request unit (RU)
category used for requests and responses
exchanged between the session control
components of a session and for session
activation and deactivation requests and
responses.

single-domain network.
In SNA, a network with one system
services control point (SSCP). Contrast
with multiple-domain network.

SI. Shift In. Used with DBCS. This is the
X'0F' character that ends DBCS data.

SLU. Secondary logical unit.

SMP. System Modification Program.

SMP/E.
System Modification Program-Extended.

SNA. Systems Network Architecture.

SNA backbone network.
A collection of SNA nodes used as a
packet switching network.

SO. Shift Out. Used with DBCS. This is the
X'0E' character that begins DBCS data.

SSP. System Support Program.

STL. Structured Translator Language.

STL Translator.
In WSim, a utility that acts as the STL

translator and translates STL statements
into message generation source
statements.

Structured Translator Language (STL).
A set of conventions and rules for writing
syntactically allowable statements that
will create message generation source
statements.

System Modification Program (SMP).
An operating system component that
facilitates the process of installing and
servicing an MVS system.

System Modification Program-Extended
(SMP-E.).

An IBM licensed program that facilitates
the process of installing and servicing an
MVS system.

Systems Network Architecture (SNA).
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through and controlling the
configuration and operation of networks.

T

TG. Transmission group.

TH. Transmission header.

time sharing option (TSO).
An optional configuration of the
operating system that provides
conversational time sharing from remote
stations in a network using VTAM.

TP. Transaction program.

TPF. Transmission priority field.

transaction program (TP).
In WSim, a transaction program is any
program that uses LU type 6.2
communication protocols to communicate
with another program. Transaction
programs are implemented in WSim
using the CPI-C application program
interface.

transmission group (TG).
In SNA, a group of links between
adjacent subarea nodes, appearing as a
single logical link for routing of messages.
A transmission group may consist of one
or more SDLC links (parallel links) or of a
single System/370 channel.

170 WSim Workload Simulator: User's Guide

transmission header (TH).
In SNA, control information, optionally
followed by a basic information unit
(BIU) or a BIU segment, that is created
and used by path control to route
message units and to control their flow
within the network.

transmission priority (TP).
In SNA, a rank assigned to a path
information unit (PIU) that determines its
precedence for being selected by the
transmission group control component of
path control for forwarding to the next
subarea node of the route used by the
PIU.

TSO. Time sharing option.

U

UA. Unnumbered acknowledgment.

user table.
In WSim, one or more text data entries
contained in a table format which may be
referenced for logic testing and message
generation.

UTI. User time interval.

Virtual Storage Access Method (VSAM).
An access method for direct or sequential
processing of fixed and variable-length
records on direct access devices. The
records in a VSAM data set or file can be
organized in logical sequence by a key
field (key sequence), in the physical
sequence in which they are written on the
data set or file (entry-sequence), or by
relative-record number.

Virtual Telecommunications Access Method
(VTAM).

An IBM licensed program that controls
communication and the flow of data in an
SNA network. It provides single-domain,
multiple-domain, and interconnected
network capability.

VSAM.
Virtual Storage Access Method.

VTAM.
Virtual Telecommunications Access
Method.

VTAMPARS II.
VTAM Performance Analysis Reporting
System II.

W

Workload Simulator (WSim).
IBM program product to simulate
terminals and networks. It enables the
user to test system performance and
evaluate network design.

write-to-operator (WTO).
An optional user-coded service that
enables the writing of a message to the
system console operator that informs the
operator of errors and unusual system
conditions that may need correcting.

write-to-operator-with-reply (WTOR).
An optional user-coded service whereby a
message may be written to the system
console operator informing him of errors
and unusual conditions that may need
correcting. The operator must key in a
response.

WSim.
Workload Simulator.

WTO. Write-to-operator.

WTOR.
Write-to-operator-with-reply.

Glossary 171

172 WSim Workload Simulator: User's Guide

Bibliography

The following manuals provide additional information about the definition and
operation of networks simulated by WSim:

WSim library
WSim User's Guide, SC31-8948

WSim Test Manager User's Guide and Reference, SC31-8949

WSim Messages and Codes, SC31-8951

Creating WSim Scripts, SC31-8945

WSim Script Guide and Reference, SC31-8946

WSim Utilities Guide, SC31-8947

WSim User Exits, SC31-8950

Related publications
MVS Installation and Tuning Guide, GC28-0681

OS/VS2/MVS System Programming Library: Job Management, GC28-0627

OS/VS2/MVS System Programming Library: TSO/E Customization, SC28-1380

VTAM Network Implementation Guide, SC31-6404

SNA Formats and Protocol Reference Manual: Architecture Logic, SC30-3112

Systems Network Architecture: Reference Summary, GA27-3136

Systems Application Architecture Common Programming Interface Communications
Reference, SC26-4399-06. (TPNS does not support CPI-C functions that have been
added in later releases of this document.)

173

174 WSim Workload Simulator: User's Guide

Index

Special characters
$ (Exit) operator command 160
* (Comment) operator command 160
* data subcommand (F command) 149

Numerics
3270 terminals

comparing display records 74
display images 68

A
A (Alter) operator command 138
AID operand (M command) 152
Alter Network Operands (A) operator

command 138
APPCLU

canceling 148
JCL for 91
query network for 105
starting activity for 158
stopping activity for 156

APPCLU statement 41
applications

prototyping with WSim 31
testing with WSim 31

area operand (A command) 141
asterisk (Comment) operator

command 160
ATRABORT operand (A command) 140
ATRDECKoperand (A command) 140
authorizing WSim

on MVS 10
under TSO 10

automating WSim operation 67

B
BTU trace, command 158

C
C (Cancel Network Resources) operator

command 148
capacity planning tests conducting 18
CDU trace, command 158
channel tracing 158
Closedown (Z) operator command 159
command and response token

(CART) 100, 116
commands

$-Exit 160
*—Comment 160
A-Alter Network Parameters 138
A─Alter Network Parameters 113
C-Cancel Network Resources 148
C─Cancel Network Resources 113
D-Dump Control Blocks 148

commands (continued)
D─Dump Control Blocks 112
E-Restart Message Logging 149
E─Restart Message Logging 123
entering from a TSO terminal 101
entering under MVS 100, 101
execution order of 99
F-Enter Console Recovery 149
F─Enter Console Recovery 113
G-Terminal Status Query 150
I-Initialize a Network 102, 151
issuing with MODIFY 99
M-Display Monitor Facility 129, 152
O-Output Data 155
operator, specifying at console 99
P-Stop Network Resources 156
Q-Query Network Resources 156
Q─Query Network Resources 103
query device 106
R-Reset a Network 158
R─Reset a Network 112
S-Start Network Resources 158
S─Start Network Resources 102
specifying resources 100
specifying with the OPCMND

Statement 99
T-Dispatcher Traces 158
T─Dispatcher Traces 112
terms used, list of 137
using 101
W-RSTATS Query 159
Z-Closedown 159

Comment (*) operator command 160
communication controller

authorizing WSim to 10
for CPI-C transaction program

configuration 9, 31
for TCP/IP configuration 9
for VTAMAPPL configuration 9, 31
JCL without 91
requirements 9

Compare List 76
Complete Records List 76
configuring the system

defined 27
example 27
identifying physical configuration 28
steps to follow 28

CONRATE operand (A command) 138
control blocks, dumping 112
CPI-C transaction program configuration

communication controller for 9, 31
network definition statements for 40
requirements 8
use of 28
using 29, 33

CPI-C transaction program simulation
physical configuration 33
physical configuration for 29

CPITRACE operand (A command) 138
cross-domain resources, controlling 112

D
D (Dump Control Block) operator

command 148
D operand (A command) 138
data base

for test 48
data set

SYSPRINT, dynamic allocation of 93
DC operand (A command) 138
DEBUG operand (A command) 138
designing the test plan 21
DESQ operand (A command) 143
DEV statement 42
devices, simulating specific types of 42
Differences Report 76
Dispatcher and Channel Traces (T)

operator command 158
dispatcher trace

command 158
description of 112

Display Monitor facility
monitoring resources 68

Display Monitor Facility
BIND images supported 132
chaining to support RU 132
controlling 132
data stream display 8
data stream display fields 130
data stream display messages 131
debugging scripts 68
debugging scripts with 125
demonstrating products 69
displaying screen images and data

flows 127, 130
installation requirements 8
logging on 126
monitoring data streams 128
selection panel 126
specifying M operator command

operands 127, 152
specifying source for building data

stream 128
specifying the resource name 129
specifying the source name 127
starting monitoring with M operator

command 126, 152
updating monitoring display 128
using 68
using, description of 8

Display Monitor Facility (M) operator
command 152

DLOGMOD operand (M command) 152
dollar sign (Exit) operator command 160
double-byte character set (DBCS)

(Display Monitor Facility) operator
command 152

(Enter Console Recovery) operator
command 149

$ (Exit) operator command 160
A (Alter) operator command 138, 148

175

Dump Control Blocks (D) operator
command 148

E
E (Restart Message Logging) operator

command 123, 149
E operand (A command) 140
end of run report 72
end of run reports

using 119
Enter Console Recovery (F) operator

command 149
entry criteria 24
execution parameters 95
Exit ($) operator command 160
exit criteria 24

F
F (Enter Console Recovery) operator

command 149
File Transfer Protocol (FTP) configuration

communication controller for 9
network definition statements for 41
requirements 8
use of 5
using 34

formatting log data set 73
function tests conducting 17

G
G (Terminal Status Query) operator

command 150

H
H operand (A command) 140
host processor requirements 4
host processor virtual storage

estimating 63

I
I (Initialize) operator command 151
I operand (A command) 140
Inactivity Report using 72
inactivity reports 119
incorrect or missing message traffic 134
Initialize a Network (I) operator

command 151
initializing a network 102
INSTALL1 15
installing the WSim/ISPF Interface

allocating data sets 13
library setup 14
SPF/PDF Primary Option Menu

changes 12
installing WSim

checklist for 15
communication controller

requirements 9
general requirements 8
host processor requirements 7

installing WSim (continued)
installing the WSim/ ISPF

Interface 12
ITPECHO Utility 7
MVS requirements 7
print the WSim Program Directory 9
using ITPECHO 7

Interactive Data Capture (IDC) 8
internal reports 71

information included in 71
using 71

ISPF, operating WSim under 95
ITPECHO Utility 7
ITPS99TU formatting 94
ITPSGEN 52
ITPSYSIN

compared to the Preprocessor 63
using 63

IUTI operand (A command) 140

J
JCL

for CPI-C, VTAM, or TCP/IP
simulation 91

operating Wsim with 91

K
K subcommand (F command) 149

L
LC operand (A command) 140
LINES operand (M command) 152
load module

in MVS system authorization 10
Log Compare Utility

Active Command List 75
Compare List 75
Complete Records List 75
Differences Report 75
output 75
Summary Report 75
synchronizing the Log Data Sets 75

log data set
comparing display records from 74
formatting 73
used for message logging 73, 121

LOGDSPLY operand (A command) 140
logical configuration

CPI-C transaction program
simulation 31

defined 27
related to physical configuration 27
TCP/IP simulation 34
types of 29
VTAM application simulation 29

logical unit
defined 27
types simulated by WSim 29

Loglist Utility
output 73
running 73

LOGON,, starting Display Monitor
Facility through 126

loops 134
LSEQ operand (A command) 140
LU Statement

VTAMAPPL configuration 40

M
M (Display Monitor Facility) operator

command 152
M operand (A command) 140
message generation decks

deciding how to create 48
defined 45
methods for creating 48
related to network definition

statements 48
steps for creating 48
using ITPLU2RF to create 55
using message generation statements

to create 49
using STL to create 50
using the script generator utility to

create 52
message generation statements

using 49
when to use 49

message logging
requirements 8

message trace records
using to test scripts 56

messages
description of logging 121
in MVS environment 121
inhibiting logging, console 122
logging 121
logging, restarting 149
no traffic, cause of 134
restarting 123

MODIFY
description of 99
routing messages 116

MONCMND operand (A command) 140
monitoring

response times 83
MSGTRACE operand (A command) 141
MVS

allocating SYSPRINT 93
controlling messages in 121
ITPS99TU format 94
JCL for 93
operating WSim under 91
return codes 97
TSO, operating WSim under 94
TSO/ISPF, operating WSim under 95

N
N subcommand (F command) 149
naming conventions 37
NC operand (A command) 141
network

canceling 113
console recovery, using 113
initializing 102
parameters, altering 113, 138
query 103

176 WSim Workload Simulator: User's Guide

network (continued)
resetting 112
resources, canceling 113, 148
resources, displaying status of 103,

156
sopping resources for 112
starting 102, 158
starting resources for 112
stopping 102, 156

network definition statements
as inputs to the Script Generator

Utility 54
coding 38
order of 38
using 38

network options, coding 43
networks

estimating storage for 63
nonswappable 10
resources in 37
simulating with WSim 37

NPM/LU2 Reformatter Utility 55
NSEQ operand (A command) 141
NSW operand (A command) 141

O
O (Output Data) operator command 155
ON operand (M command) 152
operator commands

using 67
Output Data (O) operator command 155

P
PATH operand (A command) 141
physical configuration

CPI-C transaction program 31, 33, 40
defined 28
related to logical configuration 27
TCP/IP 33, 34
VTAMAPPL 31

PIU trace, command 158
POST operand (A command) 141
Preprocessor

compared to ITPSYSIN 63
output 62
using 62

printer
dumping control blocks to 148
dumping trace tables to 158

printing output
requirements 8

problems
classifying 133
hardware 133
isolating

incorrect data 134
loops 134
missing message traffic 134
no outstanding WTOR 135
program checks 134

reporting 135
software 133
user 133

Process Actual statistics 114

Process System statistics 114
PRTSPD operand (A command) 141

Q
Q (Query Network Resources) operator

command 156
Q subcommand (F command) 150
query

APPCLU 105
device 106
network 103
save areas 111
TCP/IP or VTAM 105
transaction program 106
user areas 111

Query Network Resources (Q) operator
command 156

QUIESCE operand (A command) 141

R
R operand (A command) 141
RELEASE operand (A command) 141
RESET operand (A command) 141
resources

specifying with operator
commands 67

used for test 23
Response Time Utility

compared to RSTATS 79
defining transactions 77
for communication network

management 83
output 78
running 77
using 77

response times
determining 77
monitoring 83
using RSTATS for 70, 79
using the Response Time Utility

for 79
Restart Message Logging (E) operator

command 123, 149
restarting message logging 123
routing messages 115
RSTATS

activating 79
compared to the Response Time

Utility 79
for communication network

management 83
output 79
using 70, 79

RSTATS operand (A command) 141
RSTATS Query (W) operator

command 159
RSTATS, Response-Time Statistics feature

description of 114
output 114
Process Actual 114
Process System 114
resetting 115
RSTATS operand 115

RU
chaining to support, with Display

Monitor Facility 132
running WSim

analyzing test results 71
as a permanent task 69
automatically 67
controlling and monitoring 66
estimating storage requirements 63
from a console 67
on MVS 66
running and analyzing a sample

test 64
specifying resources 67
under TSO 66
using online response-time

monitor 70
using OPCMND statement 68
using operator commands 67
using the Display Monitor Facility 68

S
S (Start Network Resources) operator

command 158
S operand (A command) 141
sample tests

running and analyzing 61
transaction mix in 47

save areas
querying 111
user areas

querying 111
schedule

example 25
script generating utilities

Script Generator Utility 52
Script Generator Utility

capturing terminal traffic 54
defining network for 54
ITPSGEN 52
obtaining system traces 53
reformatting trace output 53
running ITPSGEN 54
sorting trace data 53
using 52

scripts
coding 5
debugging with the Display Monitor

Facility 68
defined 3
methods for testing 56
preprocessing 61
self-checking 57

scripts, debugging with Display Monitor
Facility 68

self-checking scripts
creating 57
detecting problems without 58
using 57
writing 58

SERVADDR operand (A command) 141
session

defined 19
SIGNAL operand (A command) 141
Simple TCP Client configuration

communication controller for 10

Index 177

Simple TCP Client configuration
(continued)

network definition statement for 41
requirements 8
use of 28
using 34

SOURCE operand (M command) 152
Start Network Resources (S) operator

command 158
starting and stopping 102, 103

WSim 101
STL program

example 50
procedures 50
using the STL Translator with 51

STL trace records
using to test scripts 57

STL Translator
output from 51
using 51

STLTRACE operand (A command) 141
Stop Network Resources (P) operator

command 156
storage

estimating requirements 63
for additional terminals 66
host processor virtual 63
network size 63
sample estimate of network

groups 64
sample network for estimating 64

stress tests
advantages of using WSim for 18
conducting 18
requirements 18

Structured Translator Language (STL)
advantages of using 50
using 50

Summary Report 76
SW operand (A command) 141
SYSPRINT

allocating the data set 93
system requirements for WSim 7
system under test, defined 27

T
T (Dispatcher and Channel Traces)

operator command 158
TC operand (A command) 141
TCP/IP connection (TCPIP)

canceling 113
JCL for 91
query network for 105, 156
starting activity for 158
stopping activity for 156

TCPIP statement 41
Telnet 3270 configuration

communication controller for 9
network definition statements for 41
requirements 8
use of 28
using 34

terminal
simulated, displaying 150

Terminal Status Query (G) operator
command 150

terminals
storage requirements 66

test objectives
establishing 21

test plan
creating 21
designing 21
entry and exit criteria 24
introduction 23
parts of 22
resources 23
schedule for conducting test 25
specifications 24
statement of objectives 21, 23
test procedures 24
writing 22

testing application development
testing VTAM applications 31
using WSim as an application

prototype 31
tests

analyzing results 71
capacity planning 18
configuring your system 5
costs of 19
creating message generation decks 5
deciding what to test 19
defining the simulated network 5
describing procedures for 24
establishing objectives for 21, 23
function 17
performance 18
planning for 5
regression 17
running and analyzing a sample 61
running the test 6
running WSim 66
sequence for conducting 4
stress 18
types of 17
using output 6
using output from 71

TIMER operand (M command) 152
TP statement

CPI-C transaction program
configuration 41

trace
dispatcher 112, 158
tables 158

transaction program (TP)
defined 27

transactions
deciding what to test 46
defined 46
defining to the Response Time

Utility 77
mix 47
rate of 48

TSEQ operand (A command) 141
TSO 100

authorizing WSim under 10
running WSim under 66, 101

TSW operand (A command) 141

U
U operand (A command) 141
UPDATE operand (M command) 152
UTI operand (A command) 141

V
VIEW operand (M command) 152
virtual storage

estimating 63
VTAM application simulation

physical configuration for 29
VTAMAPPL

cancelling 148
JCL for 91
query network for 105
starting activity for 158
stopping activity for 156

VTAMAPPL configuration
communication controller for 9, 31
network definition statements for 40
requirements 8
using 31

VTAMAPPL statement 40

W
W (RSTATS Query) operator

command 159
WSim

authorizing 10
checklist for installing 15
communication controller

requirements 9
controlling and monitoring 66, 73
defining the simulated network 37
description 3
general requirements 8
host processor requirements for 3
making nonswappable 10
MVS requirements for 7
operation of 91
types of resources simulated 4
using 3

WSim CLISTs 82
WSim Program Directory

obtaining 9
printing 9

WSim sample data set 81
WSim/ISPF Interface, installing

allocating data sets 14
ISPF/PDF Primary Option Menu

changes 12
library setup 14

Z
Z (Closedown) operator command 159

178 WSim Workload Simulator: User's Guide

����

Printed in USA

SC31-8948-01

	Contents
	Figures
	About this book
	Who should read this book
	How to use this book
	Where to find more information

	Part 1. Planning and installation
	Chapter 1. Getting started with WSim
	What is Workload Simulator?
	How do you use WSim?
	What can WSim simulate?

	Conducting tests
	Installing WSim
	Planning
	Configuring your system
	Defining the simulated network
	Creating message generation decks
	Running the test
	Using WSim output to analyze the results

	Chapter 2. Installing WSim
	Understanding installation and system requirements
	MVS requirements
	Disk storage space requirements
	Access method and authorization requirements

	General requirements
	Logging messages
	Printing output
	Using the VTAM Application Program Interface (API)
	Using the CPI-C transaction program support
	Using TCP/IP Telnet 3270, 3270E, 5250, or NVT, File Transfer Protocol (FTP), or simple TCP or UDP client support
	Using the Display Monitor Facility
	Using the Interactive Data Capture Utility (IDC)
	Using the WSim/ISPF Interface

	Communication controller requirements
	VTAMAPPL configuration
	CPI-C transaction program (TP) configuration
	TCP/IP application configuration

	Printing the WSim program directory
	Authorizing WSim
	Authorizing WSim on MVS
	Authorizing WSim under TSO

	Installing the WSim/ISPF Interface
	WSim library setup

	Checklist for installing WSim

	Chapter 3. Testing with WSim
	What can you test?
	Function tests
	Regression tests
	Performance tests
	Stress tests
	Capacity planning tests

	What should you test?
	What is the cost of testing?
	What is the cost of not testing?

	Chapter 4. Creating a test plan
	Establishing test objectives
	Purpose
	Expected results

	Designing a test plan
	Writing a test plan
	Introduction
	Objectives
	Resources
	Hardware and software
	Time
	Staffing

	Test specifications
	Testing procedures
	Entry and exit criteria
	Sequence of sample tests
	Procedures for reporting problems and status
	Schedule

	Chapter 5. Determining your system configuration
	Understanding logical and physical configurations
	Logical configuration
	Physical configuration

	Configuring your system
	Summary

	Determining logical and physical configurations
	VTAM application simulation
	Using the VTAMAPPL configuration
	Testing application development

	CPI-C transaction program simulation
	Using the CPI-C TP configuration
	Testing application development

	TCP/IP application configuration
	Using the TCP/IP application configuration

	Chapter 6. Defining the simulated network
	Naming the network and its resources
	Using network definition statements
	Syntax of network definition statements
	Order of network definition statements

	Simulating networks
	Simulating logical units using the VTAM application program interface
	VTAMAPPL statement
	LU statement

	Simulating CPI-C transaction programs
	APPCLU statement
	TP statement

	Simulating TCP/IP clients
	TCPIP statement
	DEV statement

	Simulating specific devices
	Coding network options

	Chapter 7. Creating message generation decks
	What are message generation decks?
	Steps for creating message generation decks
	Deciding which transactions to test
	Considering what messages you want to send
	Considering what messages you expect to receive
	Considering the transaction mix
	Considering the transaction rate

	Deciding which application files and data to use
	Creating message generation decks
	Using message generation statements
	Using the Structured Translator Language and the STL Translator
	Sample STL program
	Using the STL Translator

	Using the Interactive Data Capture Utility (ITPIDC)
	Using the Script Generator Utility
	Obtaining a trace of system activity
	Reformatting the trace output
	Sorting the trace data
	Defining the network
	Generating message generation decks with ITPSGEN
	Capturing terminal traffic

	Using SNA 3270 Reformatter Utility (ITPLU2RF)
	Using the TCP/IP Trace STL Generation Utility
	Obtaining a TCP/IP trace
	Generating STL from a TCP/IP trace

	Testing scripts
	Using message trace records
	Using STL trace records
	Using self-checking scripts
	Writing self-checking scripts
	Detecting problems without self-checking scripts

	Chapter 8. Running the test
	Running and analyzing a sample test
	Preprocessing the script
	Using the Preprocessor
	Using ITPSYSIN

	Estimating storage requirements
	Host processor virtual storage estimates
	Network storage size N
	Sample network for estimating storage
	Adding terminals

	Running WSim
	Using MVS
	Using TSO

	Controlling and monitoring WSim operation
	Using operator commands
	Controlling WSim from a console
	Controlling WSim automatically
	Using the Display Monitor Facility
	Debugging scripts
	Monitoring WSim
	Demonstrating products

	Running WSim as a permanent task
	Understanding the benefits and concerns
	Using the online response-time monitor

	Chapter 9. Using WSim output
	Using operator reports
	Using interval reports
	Using end of run reports
	Using inactivity reports

	Logging messages
	Formatting the log data set
	Running the Loglist Utility
	Using the output from the Loglist Utility

	Comparing 3270 display records
	Running the Log Compare Utility
	Synchronizing the log data sets
	Using the output from the Log Compare Utility

	Determining response times
	Using the Response Time Utility
	Running the Response Time Utility
	Defining transactions
	Using output from the Response Time Utility

	Using the response-time statistics feature
	Deciding whether to use RSTATS or the Response Time Utility
	Activating the RSTATS feature
	Using the output from RSTATS

	Chapter 10. Sample files
	MVS sample data set
	CLIST data sets

	Chapter 11. Using WSim to measure response times
	RSTATS feature
	Response Time Utility

	Chapter 12. Summary of logical unit (LU) types
	Part 2. Operation
	Chapter 13. Introduction to WSim operation
	Chapter 14. Running WSim
	Running WSim on MVS with JCL
	Using JCL for CPI-C, VTAMAPPL or TCP/IP simulations
	Description of the JCL data sets

	Allocating the SYSPRINT data set
	Formatting ITPS99TU

	Running WSim on MVS with a TSO CLIST
	Planning considerations
	Communicating with a TSO terminal
	Using a TSO CLIST

	Running WSim under ISPF
	Using WSim execution parameters
	Understanding return codes

	Chapter 15. Using operator commands
	Introducing operator commands
	Specifying operator commands at the console
	Specifying operator commands with the OPCMND statement
	Understanding the order of execution for operator commands

	Specifying resources with operator commands
	Entering operator commands at the console
	Entering operator commands on MVS with WSim as a started procedure
	Entering operator commands on MVS with WSim as a batch job
	Entering operator commands when executing directly under TSO

	Controlling WSim and simulated resources
	Starting and stopping WSim
	Starting WSim
	Stopping WSim

	Initializing and starting a network
	Initializing a network
	Starting network resources
	Stopping network resources

	Displaying the status of network resources
	Query without specifying resources
	Query network
	Query TCP/IP connection, APPC LU, or VTAM application
	Query device
	Query save and user areas

	Using service facilities
	Dispatcher trace
	Dumping control blocks

	Controlling resources on a network
	Starting and stopping resources
	Resetting a network
	Changing network parameters
	Canceling network resources
	Using console recovery

	Using online response-time statistics
	RSTATS output
	The RSTATS operand
	Resetting response statistics

	Routing messages
	Routing messages to consoles
	Routing console messages with MODIFY
	Routing console messages without MODIFY

	Routing messages to log data sets

	Chapter 16. Using operator reports
	Using interval reports
	Using end of run reports
	Using inactivity reports

	Chapter 17. Controlling message logging
	What is message logging?
	Logging messages
	Inhibiting the logging of console messages
	Restarting message logging

	Chapter 18. Using the Display Monitor Facility
	Using the Display Monitor Facility
	Debugging scripts
	Monitoring scripts

	Starting the Display Monitor Facility
	Using the M operator command
	Logging on to the Display Monitor Facility

	Viewing screen images
	Specifying NAME
	Specifying VIEW
	Specifying UPDATE
	Specifying SOURCE
	Specifying TIMER
	Specifying AID

	Viewing the data stream
	Specifying NAME
	Specifying VIEW and LINES
	Specifying CODE
	Interpreting the Display Monitor Facility data stream display
	Interpreting data stream messages
	Controlling the Display Monitor Facility data stream display

	Specifying BIND profiles
	Chaining to support max RU size when VIEW=SCREEN and SOURCE=DATA

	Chapter 19. Isolating problems
	Classifying problems
	Classifying hardware problems
	Classifying software problems
	Classifying problems with installation and procedures

	Isolating problems
	Program checks
	Loops
	Incorrect or missing message traffic
	No outstanding WTOR

	Problem reporting

	Chapter 20. Specifying operator commands
	Understanding operator command coding terms
	Understanding operator command coding conventions
	Understanding resource names
	Using operator commands
	A-Alter network operands
	C-Cancel network resources
	D-Dump control blocks
	E-Restart message logging
	F-Enter console recovery
	G-Terminal status query
	I-Initialize a network
	M-Display monitor facility
	O-Output data
	P-Stop network resources
	Q-Query network resources
	R-Reset a network
	S-Start network resources
	T-Dispatcher traces
	W-RSTATS query
	Z-Closedown
	*-Comment
	$-Exit

	Part 3. Appendixes
	Notices
	Trademarks and service marks

	Glossary
	Bibliography
	WSim library
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

